Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
J Dairy Sci ; 106(3): 1746-1756, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36586803

RESUMO

Yeast culture and phytonutrients are dietary supplements with distinct modes of action, and they may have additive effects on the performance of dairy cattle. The objective of this study was to investigate the effects of a preparation of phytonutrients and a yeast culture from Saccharomyces cerevisiae on lactational performance, total-tract digestibility of nutrients, urinary nitrogen losses, energy metabolism markers, and blood cells in dairy cows. Thirty-six mid-lactation Holstein cows (10 primiparous and 26 multiparous) were used in an 8-wk randomized complete block design experiment with a 2-wk covariate period, 2 wk for adaptation to the diets, and a 4-wk experimental period for data and samples collection. Following a 2-wk covariate period, cows were blocked by days in milk, parity, and milk yield and randomly assigned to 1 of 3 treatments (12 cows per treatment): basal diet supplemented with 14 g/cow per day yeast culture (YC; S. cerevisiae), basal diet supplemented with 1.0 g/cow per day phytonutrients (PN; 5.5% cinnamaldehyde, 9.5% eugenol, and 3.5% capsicum oleoresin), or basal diet supplemented with a combination of YC and PN (YCPN). Treatments were top-dressed once daily on the total mixed ration at time of feeding. Dry matter intake, milk yield, and feed efficiency were not affected by treatments. Milk composition and energy-corrected milk yield were also not affected by supplementation of YC, PN, and YCPN. There were no differences in intake or total-tract digestibility of dietary nutrients among treatments. Compared with YC, the PN and YCPN treatments tended to decrease the proportion of short-chain fatty acids in milk fat. There was an additive effect of YC and PN supplementation on urinary urea nitrogen (UUN) excretion relative to total nitrogen intake. Cows fed a diet supplemented with YCPN had lower UUN excretion than cows in YC and tended to have lower UUN excretion compared with PN. Blood monocytes count and percentage were decreased in cows fed PN and YCPN diets compared with YC. Treatments did not affect concentrations of blood ß-hydroxybutyrate and total fatty acids. Overall, lactational performance, digestibility of nutrients, energy metabolism markers, and blood cells were not affected by YC, PN, or YCPN supplementation. A combination of PN and YC had an additive effect on nitrogen excretion in dairy cows.


Assuntos
Suplementos Nutricionais , Saccharomyces cerevisiae , Gravidez , Feminino , Bovinos , Animais , Dieta/veterinária , Leite/metabolismo , Lactação , Nutrientes , Compostos Fitoquímicos/metabolismo , Nitrogênio/metabolismo , Ração Animal/análise , Rúmen/metabolismo
2.
J Dairy Sci ; 105(10): 8543-8557, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35863922

RESUMO

Intensive research in the past decade has resulted in a better understanding of factors driving enteric methane (CH4) emissions in ruminants. Meta-analyses of large databases, developed through the GLOBAL NETWORK project, have identified successful strategies for mitigation of CH4 emissions. Methane inhibitors, alternative electron sinks, vegetable oils and oilseeds, and tanniferous forages are among the recommended strategies for mitigating CH4 emissions from dairy and beef cattle and small ruminants. These strategies were also effective in decreasing CH4 emissions yield and intensity. However, a higher inclusion rate of oils may negatively affect feed intake, rumen function, and animal performance, specifically milk components in dairy cows. In the case of nitrates (electron sinks), concerns with animal health may be impeding their adoption in practice, and potential emission trade-offs have to be considered. Tannins and tanniferous forages may have a negative effect on nutrient digestibility, and more research is needed to confirm their effects on overall animal performance in long-term experiments with high-producing animals. A meta-analysis of studies with dairy cows fed the CH4 inhibitor 3-nitrooxypropanol (3-NOP) at the Pennsylvania State University showed (1) a consistent 28 to 32% decrease in daily CH4 emissions or emissions yield and intensity; (2) no effect on dry matter intake, milk production, body weight, or body weight change, and a slight increase in milk fat concentration and yield (0.19 percentage units and 90 g/d, respectively); 3-NOP also appears to increase milk urea nitrogen concentration; (3) an exponential decrease in the mitigation effect of the inhibitor with increasing its dose (from 40 to 200 mg/kg of feed dry matter, corresponding to 3-NOP intake of 1 to 4.8 g/cow per day); and (4) a potential decrease in the efficacy of 3-NOP over time, which needs to be further investigated in long-term, full-lactation or multiple-lactation studies. The red macroalga Asparagopsis taxiformis has a strong CH4 mitigation effect, but studies are needed to determine its feasibility, long-term efficacy, and effects on animal production and health. We concluded that widespread adoption of mitigation strategies with proven effectiveness by the livestock industries will depend on cost, government policies and incentives, and willingness of consumers to pay a higher price for animal products with decreased carbon footprint.


Assuntos
Dieta , Metano , Animais , Peso Corporal , Bovinos , Dieta/veterinária , Feminino , Humanos , Nitrogênio , Óleos de Plantas , Ruminantes , Taninos , Ureia
3.
J Dairy Sci ; 105(9): 7344-7353, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35879158

RESUMO

The objective of this study was to investigate the effects of an exogenous enzyme preparation from Aspergillus oryzae and Aspergillus niger on lactational performance of dairy cows. Forty-eight Holstein cows (32 primiparous and 16 multiparous) averaging (± SD) 36.3 ± 8.7 kg/d milk yield and 141 ± 52 d in milk were enrolled in a 10-wk randomized complete block design experiment (total of 24 blocks) and assigned to 1 of 2 treatments: basal diet, no enzyme supplementation (CON) or the basal diet supplemented with 4.2 g/kg dry matter intake (DMI) of an exogenous enzyme preparation containing amylolytic and fibrolytic activities (ENZ). After a 2-wk covariate period, premixes with the enzyme preparation or control were top-dressed daily by mixing with approximately 500 g of total mixed ration. Production data were collected daily and averaged by week. Milk samples were collected every other week, and milk composition was averaged by week. Blood, fecal, and urine samples were collected over 2 consecutive days at 0, 4, 8, 12, and 36 h after feeding during the last week of the experiment. Compared with CON, cows fed ENZ tended to increase DMI and had increased milk concentrations of true protein, lactose, and other solids. Milk fat content tended to be higher in CON cows. A treatment × parity interaction was found for some of the production variables. Primiparous cows receiving ENZ had greater yields of milk, energy-corrected milk, milk true protein, and lactose compared with CON primiparous cows; these production variables did not differ between treatments for multiparous cows. Intake and total-tract digestibility of nutrients did not differ between treatments. Concentrations of blood glucose and total fatty acids were not affected by ENZ supplementation, but ß-hydroxybutyrate concentration tended to be greater in ENZ cows. Overall, the exogenous enzyme preparation used in this study increased milk protein and lactose concentrations in all cows, and milk production in primiparous but not multiparous cows. The differential production response between primiparous and multiparous cows was likely a result of a greater increase in DMI with ENZ supplementation in the younger animals.


Assuntos
Lactação , Lactose , Ração Animal/análise , Animais , Aspergillus , Bovinos , Dieta/veterinária , Feminino , Lactação/fisiologia , Lactose/metabolismo , Leite/metabolismo , Proteínas do Leite/metabolismo , Paridade , Gravidez
4.
J Dairy Sci ; 105(1): 170-187, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34656346

RESUMO

The objective of this experiment was to investigate the effect of dietary levels of digestible histidine (dHis) and MP on lactational performance and plasma and muscle concentrations of free AA in dairy cows. A randomized block design experiment was conducted with 48 Holstein cows, including 20 primiparous, averaging (±SD) 103 ± 22 d in milk and 45 ± 9 kg/d milk yield at the beginning of the experiment. A 2-wk covariate period preceded 12 experimental wk, of which 10 wk were for data and sample collection. Experimental treatments were (1) MP-adequate (MPA) diet with 2.1% dHis of MP (MPA2.1), (2) MPA with 3.0% dHis (MPA3.0), (3) MP-deficient (MPD) diet with 2.1% dHis (MPD2.1), and (4) MPD with 3.0% dHis (MPD3.0). Actual dHis supply was estimated at 64, 97, 57, and 88 g/d, respectively. Diets supplied MP at 110% (MPA) and 96% (MPD) of NRC 2001 dairy model requirements calculated based on DMI and production data during the experiment. Dry matter intake and milk yield data were collected daily, milk samples for composition and blood samples for AA analysis were collected every other week, and muscle biopsies at the end of covariate period, and during wk 12 of the experiment. The overall DMI was not affected by dHis or MP level. Milk yield tended to be increased by 3.0% dHis compared with 2.1% dHis. Milk true protein concentration and yield were not affected by treatments, whereas milk urea nitrogen concentration was lower for MPD versus the MPA diet. Milk fat concentration was lower for MPD versus MPA. There was a MP × dHis interaction for milk fat yield and energy-corrected milk; milk fat was lower for MPD3.0 versus MPD2.1, but similar for cows fed the MPA diet regardless of dHis level whereas energy-corrected milk was greater for MPA3.0 versus MPA2.1 but tended to be lower for MPD3.0 versus MPD2.1. Plasma His concentration was greater for cows fed dHis3.0, and concentration of sum of essential AA was greater, whereas carnosine, 1-Methyl-His and 3-Methyl-His concentrations were lower for cows fed MPA versus MPD diet. Muscle concentration of His was greater for cows fed dHis3.0 treatment. The apparent efficiency of His utilization was increased at lower MP and His levels. Overall, cows fed a corn silage-based diet supplying MP at 110% of NRC (2001) requirements tended to have increased ECM yield and similar milk protein yield to cows fed a diet supplying MP at 96% of requirements. Supplying dHis at 3.0% of MP (or 86 and 96 g/d, for MPD3.0 and MPA3.0, respectively) tended to increase milk yield and increased plasma and muscle concentrations of His but had minor or no effects on other production variables in dairy cows.


Assuntos
Histidina , Rúmen , Aminoácidos , Animais , Bovinos , Dieta/veterinária , Feminino , Lactação , Proteínas do Leite , Músculos , Zea mays
5.
J Dairy Sci ; 105(3): 2288-2300, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35086703

RESUMO

The objective of this study was to investigate the effects of supplementation of an exogenous enzyme preparation (EEP) on performance, total-tract digestibility of nutrients, plasma AA profile, and milk fatty acids composition in lactating dairy cows fed a reduced-starch diet compared with a normal-starch diet (i.e., positive control). Forty-eight Holstein cows (28 primiparous and 20 multiparous) were enrolled in a 10-wk randomized complete block design experiment with 16 cows per treatment. Treatments were as follows: (1) normal-starch diet (control) containing (% dry matter basis) 24.8% starch and 33.0% neutral detergent fiber (NDF), (2) reduced-starch diet (RSD) containing 18.4% starch and 39.1% NDF, or (3) RSD supplemented with 10 g/cow per day of an EEP (ENZ). The EEP contained amylolytic and fibrolytic activities and was top-dressed on the total mixed ration at the time of feeding. Compared with normal-starch diet, dry matter intake and milk and energy-corrected milk (ECM) yields were lower (on average by 7.1, 9.5, and 7.2%, respectively) for cows on the RSD treatments. Concentrations, but not yields, of milk fat and total solids were increased by RSD. Energy-corrected milk feed efficiency did not differ among treatments. Total-tract digestibility of NDF tended to increase by RSD treatments. Plasma AA concentrations were not affected by treatment, except that of 3-methylhistidine was increased by ENZ, compared with RSD. Blood glucose concentration tended to be lower in cows on the RSD treatments, but ENZ increased glucose and tended to increase insulin concentrations at 4 h after feeding when compared with RSD. Cows on the RSD treatments had decreased concentrations of de novo fatty acids and tended to have increased concentrations of preformed fatty acids in milk. Overall, decreasing dietary starch concentration by 26% decreased dry matter intake, milk, and ECM yields, but ECM feed efficiency was not different among treatments. The negative effects of reducing dietary starch on production were not attenuated by the EEP.


Assuntos
Lactação , Amido , Ração Animal/análise , Animais , Bovinos , Dieta/veterinária , Suplementos Nutricionais , Digestão , Feminino , Leite , Rúmen , Amido/farmacologia
6.
J Dairy Sci ; 104(9): 9902-9916, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34099283

RESUMO

The objective of this experiment was to determine the effect of increasing digestible His (dHis) doses on milk production, milk composition, and plasma AA concentrations in lactating dairy cows fed diets that meet or exceed their energy and metabolizable protein (MP) requirements. In a companion paper (Räisänen et al., 2021) results are presented on the effect of increasing dHis dose with an MP-deficient basal diet. In this experiment, 16 Holstein cows (72 ± 15 d in milk) were used in a replicated 4 × 4 Latin square design experiment with four 28-d periods. Treatments were as follows: (1) control, total mixed ration (TMR) with 1.8% dHis of MP (TMR1; dHis1.8); (2) a different TMR with 2.2% dHis (TMR2; dHis2.2); (3) TMR2 supplemented with rumen-protected His (RP-His) to supply 2.6% dHis (dHis2.6); and (4) TMR2 supplemented with RP-His to supply 3.0% dHis of MP (dHis3.0). Estimated dHis intakes calculated at the end of the experiment were 46, 58, 69, and 79 g/d for dHis1.8, dHis2.2, dHis2.6, and dHis3.0, respectively. Contrasts were used to compare TMR1 with TMR2 and to test the linear and quadratic effects of RP-His inclusion rate on TMR2. We detected no effects of TMR or dHis dose on dry matter intake or milk yield, whereas energy-corrected milk (ECM) yield was quadratically increased, being greatest for cows on treatment dHis2.6. Milk true protein and lactose concentrations and milk true protein yield were not affected by TMR or dHis dose. Milk fat concentration and yield increased quadratically, and lactose yield tended to increase quadratically with increasing dHis dose. Calculated apparent efficiency of His utilization decreased quadratically with increasing dHis supply. Further, plasma concentration of His was greater for cows on TMR2 compared with TMR1. When an MP-adequate diet was fed to dairy cows, milk true protein concentration and yield were not affected by dHis supply, but milk fat and ECM yields of dairy cows were optimized at dHis supply of 69 g/d or 2.65% of MP.


Assuntos
Histidina , Lactação , Ração Animal/análise , Animais , Bovinos , Dieta/veterinária , Proteínas Alimentares , Feminino , Leite , Proteínas do Leite , Rúmen
7.
J Dairy Sci ; 104(3): 3052-3066, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33455785

RESUMO

This study investigated the effects of feeding solvent-extracted canola meal (CM), extruded soybean meal (ESBM), or solvent-extracted soybean meal (SSBM) on an equivalent crude protein basis on performance, plasma AA profiles, enteric gas emissions, milk fatty acids, and nutrient digestibility in lactating dairy cows. Fifteen Holstein cows (95 ± 20 d in milk) were used in a replicated 3 × 3 Latin square design experiment with 3 periods of 28 d each. Treatments were 3 diets containing 17.1% CM, 14.2% ESBM, or 13.6% SSBM (dry matter basis). Vegetable oil was added (canola oil for CM or soybean oil for SSBM) to equalize the ether extract concentration of the diets. Rumen-protected Met was supplemented targeting digestible Met supply of 2.2% of metabolizable protein in all diets. Canola meal increased dry matter intake (DMI) by 5.9 and 8.9% in comparison with ESBM and SSBM, respectively. Milk urea nitrogen was lowest in CM, followed by SSBM, and was highest for ESBM. No differences were observed in feed efficiency, energy-corrected milk yield, and milk composition or component yields among treatments. Cows fed CM emitted less enteric CH4 per kg of DMI compared with both ESBM and SSBM, but CH4 emission intensity (CH4 per kg of energy-corrected milk) was similar among treatments. In summary, replacement of ESBM or SSBM with CM, on an equal crude protein basis, in the diet of lactating dairy cows enhanced DMI, but yields of energy-corrected milk and milk components and feed efficiency were similar among treatments.


Assuntos
Glycine max , Lactação , Aminoácidos , Ração Animal/análise , Animais , Bovinos , Dieta/veterinária , Proteínas Alimentares , Feminino , Refeições , Leite , Plasma , Rúmen
8.
J Dairy Sci ; 104(9): 9917-9930, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34099295

RESUMO

The objective of this experiment was to determine the effect of increasing digestible His (dHis) levels with a rumen-protected (RP) His product on milk production, milk composition, and plasma AA concentrations in lactating dairy cows fed a metabolizable protein (MP)-deficient diet, according to the National Research Council dairy model from 2001. The companion paper presents results on the effect of increasing dHis dose with a MP-adequate basal diet. Twenty Holstein cows, of which 8 were rumen-cannulated, were used in a replicated 4 × 4 Latin square design experiment with four 28-d periods. Treatments were a control diet supplying 1.8% dHis of MP or 37 g/d (dHis1.8) and the control diet supplemented RP-His to provide 2.2, 2.6, or 3.0%, dHis of MP, or 53, 63, and 74 g/d (dHis2.2, dHis2.6, and dHis3.0, respectively). Histidine dose did not affect dry matter intake, but milk yield increased quadratically and energy-corrected milk yield increased linearly with increasing dHis dose. Histidine dose had a quadratic effect on milk fat concentration but did not affect milk fat yield. Lactose concentration decreased linearly, whereas lactose yield increased linearly with increasing dHis dose. There was a tendency for a linear increase in milk true protein concentration, and milk true protein yield increased linearly with dHis dose. Further, plasma His concentration increased linearly with increasing dHis dose and calculated apparent efficiency of His utilization decreased quadratically with increasing dHis supply. Histidine had minor or no effects on rumen fermentation. In the conditions of this experiment, RP-His supplementation of an MP-deficient corn silage-based diet increased milk yield linearly up to a dHis supply of 63 g/d (or 2.6% dHis of MP) and increased feed efficiency, energy-corrected milk yield and milk true protein yield linearly up to a dHis supply of 74 g/d (or 3.0% dHis of MP) in lactating dairy cows.


Assuntos
Histidina , Lactação , Ração Animal/análise , Animais , Bovinos , Dieta/veterinária , Feminino , Fermentação , Histidina/metabolismo , Leite/metabolismo , Proteínas do Leite/metabolismo , Rúmen/metabolismo
9.
J Dairy Sci ; 104(9): 9827-9841, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34253370

RESUMO

This study investigated the effects of an amylase-enabled corn silage on lactational performance, enteric CH4 emission, and rumen fermentation of lactating dairy cows. Following a 2-wk covariate period, 48 Holstein cows were blocked based on parity, days in milk, milk yield (MY), and CH4 emission. Cows were randomly assigned to 1 of 2 treatments in an 8-wk randomized complete block design experiment: (1) control corn silage (CON) from an isogenic corn without α-amylase trait and (2) Enogen hybrid corn (Syngenta Seeds LLC) harvested as silage (ECS) containing a bacterial transgene expressing α-amylase (i.e., amylase-enabled) in the endosperm of the grain. The ECS and CON silages were included at 40% of the dietary dry matter (DM) and contained, on average, 43.3 and 41.8% DM and (% DM) 36.7 and 37.5% neutral detergent fiber, and 36.1 and 33.1% starch, respectively. Rumen samples were collected from a subset of 10 cows using the ororuminal sampling technique on wk 3 of the experimental period. Enteric CH4 emission was measured using the GreenFeed system (C-Lock Inc.). Dry matter intake (DMI) was similar between treatments. Compared with CON, MY (38.8 vs. 40.8 kg/d), feed efficiency (1.47 vs. 1.55 kg of MY/kg of DMI), and milk true protein (1.20 vs. 1.25 kg/d) and lactose yields (1.89 vs. 2.00 kg/d) were increased, whereas milk urea nitrogen (14.0 vs. 12.7 mg/dL) was decreased, with the ECS diet. No effect of treatment on energy-corrected MY (ECM) was observed, but a trend was detected for increased ECM feed efficiency (1.45 vs. 1.50 kg of ECM/kg of DMI) for cows fed ECS compared with CON-fed cows. Daily CH4 emission was not affected by treatment, but emission intensity was decreased with the ECS diet (11.1 vs. 10.3 g/kg of milk, CON and ECS, respectively); CH4 emission intensity on ECM basis was not different between treatments. Rumen fermentation, apart from a reduced molar proportion of butyrate in ECS-fed cows, was not affected by treatment. Apparent total-tract digestibility of nutrients and urinary and fecal nitrogen excretions, apart from a trend for increased DM digestibility by ECS-fed cows, were not affected by treatment. Overall, ECS inclusion at 40% of dietary DM increased milk, milk protein, and lactose yields and feed efficiency, and tended to increase ECM feed efficiency but had no effect on ECM yield in dairy cows. The increased MY with ECS led to a decrease in enteric CH4 emission intensity, compared with the control silage.


Assuntos
Rúmen , Silagem , Amilases/metabolismo , Animais , Bovinos , Dieta/veterinária , Digestão , Feminino , Fermentação , Lactação , Metano/metabolismo , Gravidez , Rúmen/metabolismo , Silagem/análise , Zea mays
10.
J Dairy Sci ; 104(11): 11609-11620, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34419284

RESUMO

In ruminants, it has been observed that capsicum oleoresin can alter insulin responses and that high-intensity artificial sweetener can increase glucose absorption from the small intestine. Because glucose metabolism and insulin responses are critical during early lactation, these supplements might have an effect on the metabolic status of dairy cows during the transition period. The objective of this experiment was to evaluate the effects of rumen-protected capsicum oleoresin fed alone or in combination with artificial sweetener during the transition period on lactational performance and susceptibility to subclinical ketosis in dairy cows. Fifteen primiparous and 30 multiparous Holstein cows (a total of 39 cows finished the study) were arranged in a randomized complete block design during d -21 to 60 relative to parturition. Cows within block were randomly assigned to one of the following treatments: no supplement (CON), supplementation with 100 mg of rumen-protected capsicum/cow per day (RPCap), or RPCap plus 2 g of high-intensity artificial sweetener/cow per day (RPCapS). For both the RPCap and RPCapS treatments, only rumen-protected capsicum was fed during the dry period. From d 8 to 11 of lactation, intake was limited to 70% of predicted dry matter intake to induce subclinical ketosis. Production variables were recorded daily, samples for milk composition were collected on wk 2, 4, 6, and 8, and blood samples were collected on wk -2, 1, 2, and 4 of the experiment for analysis of metabolic hormones and blood cell counts. Supplementation with rumen-protected capsicum increased serum insulin and decreased ß-hydroxybutyrate concentrations precalving, indicating a decrease in lipolysis. During the lactation period, RPCap was associated with a trend for increased milk production and feed efficiency following the ketosis challenge. Supplementation with RPCapS appeared to negate the response to rumen-protected capsicum. All cows developed subclinical ketosis during the challenge, and this was not affected by treatment. We conclude that treatments did not decrease susceptibility to subclinical ketosis; however, dietary supplementation with rumen-protected capsicum was effective at improving energy status precalving and tended to increased milk production and feed efficiency. The mechanism underlying these responses is unclear.


Assuntos
Capsicum , Rúmen , Ração Animal/análise , Animais , Bovinos , Dieta/veterinária , Suplementos Nutricionais , Lactação , Leite
11.
J Dairy Sci ; 104(8): 8721-8735, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34024597

RESUMO

The purpose of this study was to investigate the effect of 3-nitrooxypropanol (3-NOP), a potent methane inhibitor, on total and metabolically active methanogens in the rumen of dairy cows over the course of the day and over a 12-wk period. Rumen contents of 8 ruminally cannulated early-lactation dairy cows were sampled at 2, 6, and 10 h after feeding during wk 4, 8, and 12 of a randomized complete block design experiment in which 3-NOP was fed at 60 mg/kg of feed dry matter. Cows (4 fed the control and 4 fed the 3-NOP diet) were blocked based on their previous lactation milk yield or predicted milk yield. Rumen samples were extracted for microbial DNA (total) and microbial RNA (metabolically active), PCR amplified for the 16S rRNA gene of archaea, sequenced on an Illumina platform, and analyzed for archaea diversity. In addition, the 16S copy number and 3 ruminal methanogenic species were quantified using the real-time quantitative PCR assay. We detected a difference between DNA and RNA (cDNA)-based archaea communities, revealing that ruminal methanogens differ in their metabolic activities. Within DNA and cDNA components, methanogenic communities differed by sampling hour, week, and treatment. Overall, Methanobrevibacter was the dominant genus (94.3%) followed by Methanosphaera, with the latter genus having greater abundance in the cDNA component (14.5%) compared with total populations (5.5%). Methanosphaera was higher at 2 h after feeding, whereas Methanobrevibacter increased at 6 and 10 h in both groups, showing diurnal patterns among individual methanogenic lineages. Methanobrevibacter was reduced at wk 4, whereas Methanosphaera was reduced at wk 8 and 12 in cows supplemented with 3-NOP compared with control cows, suggesting differential responses among methanogens to 3-NOP. A reduction in Methanobrevibacter ruminantium in all 3-NOP samples from wk 8 was confirmed using real-time quantitative PCR. The relative abundance of individual methanogens was driven by a combination of dietary composition, dry matter intake, and hydrogen concentrations in the rumen. This study provides novel information on the effects of 3-NOP on individual methanogenic lineages, but further studies are needed to understand temporal dynamics and to validate the effects of 3-NOP on individual lineages of ruminal methanogens.


Assuntos
Propanóis , Rúmen , Ração Animal/análise , Animais , Bovinos , Dieta/veterinária , Feminino , Fermentação , Lactação , Metano/metabolismo , Leite , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Rúmen/metabolismo
12.
J Dairy Sci ; 104(1): 357-366, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33131815

RESUMO

This study examined the effect of 3-nitrooxypropanol (3-NOP), an investigational substance, on enteric methane emission, milk production, and composition in Holstein dairy cows. Following a 3-wk covariate period, 48 multi- and primiparous cows averaging (± standard deviation) 118 ± 28 d in milk, 43.4 ± 8 kg/d milk yield, and 594 ± 57 kg of body weight were blocked based on days in milk, milk yield, and enteric methane emission and randomly assigned to 1 of 2 treatment groups: (1) control, no 3-NOP, and (2) 3-NOP applied at 60 mg/kg feed dry matter. Inclusion of 3-NOP was through the total mixed ration and fed for 15 consecutive weeks. Cows were housed in a freestall barn equipped with a Calan Broadbent Feeding System (American Calan Inc., Northwood, NH) for monitoring individual dry matter intake and fed ad libitum once daily. Enteric gaseous emissions (methane, carbon dioxide, and hydrogen) were measured using 3 GreenFeed (C-Lock Inc., Rapid City, SD) units. Dry matter intake, cow body weight, and body weight change were not affected by 3-NOP. Compared with the control group, 3-NOP applied at 60 mg/kg feed dry matter decreased daily methane emission, emission yield, and emission intensity by 26, 27, and 29%, respectively. Enteric emission of carbon dioxide was not affected, and hydrogen emission was increased 6-fold by 3-NOP. Administration of 3-NOP had no effect on milk and energy-corrected milk yields and feed efficiency, increased milk fat and milk urea nitrogen concentrations, and increased milk fat yield but had no other effects on milk components. Concentration of C6:0 and C8:0 and the sum of saturated fatty acids in milk fat were increased by 3-NOP. Total trans fatty acids and the sum of polyunsaturated fatty acids were decreased by 3-NOP. In this experiment, 3-NOP decreased enteric methane daily emission, yield, and intensity without affecting dry matter intake and milk yield, but increased milk fat in high-producing dairy cows.


Assuntos
Bovinos/metabolismo , Trato Gastrointestinal/efeitos dos fármacos , Lactação/efeitos dos fármacos , Metano/metabolismo , Leite/química , Propanóis/administração & dosagem , Animais , Dieta/veterinária , Ácidos Graxos/análise , Feminino , Trato Gastrointestinal/metabolismo , Lipídeos/análise , Leite/efeitos dos fármacos , Nitrogênio/análise
13.
J Dairy Sci ; 104(4): 4157-4173, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33516546

RESUMO

Asparagopsis taxiformis (AT) is a source of multiple halogenated compounds and, in a limited number of studies, has been shown to decrease enteric CH4 emission in vitro and in vivo. Similarly, oregano has been suggested as a potential CH4 mitigating agent. This study consisted of 2 in vitro and 2 in vivo experiments. Experiment (Exp.) 1 was aimed at establishing the effect of AT on CH4 emission in vitro. Two experiments (Exp. 2 and 3) with lactating dairy cows were conducted to determine the antimethanogenic effect of AT and oregano (Exp. 3) in vivo. Another experiment (Exp. 4) was designed to investigate stability of bromoform (CHBr3) in AT over time. In Exp. 3, 20 Holstein cows were used in a replicated 4 × 4 Latin square design with four 28-d periods. Treatments were basal diet (control) or basal diet supplemented with (dry matter basis) 0.25% AT (LowAT), 0.50% AT (HighAT), or 1.77% oregano (Origanum vulgare L.) leaves. Enteric gas emissions were measured using the GreenFeed system (C-Lock Inc., Rapid City, SD), and rumen samples were collected for fermentation analysis using the ororuminal technique. In Exp.1 (in vitro), relative to the control, AT (at 1% dry matter basis, inclusion rate) decreased CH4 yield by 98%. In Exp. 3, HighAT decreased average daily CH4 emission and CH4 yield by 65% and 55%, respectively, in experimental periods 1 and 2, but had no effect in periods 3 and 4. The differential response to AT among experimental periods was likely a result of a decrease in CHBr3 concentration in AT over time, as observed in Exp. 4 (up to 84% decrease in 4 mo of storage). In Exp. 3, H2 emission was increased by AT and, as expected, the proportion of acetate in the total volatile fatty acids in the rumen was decreased and those of propionate and butyrate were increased by HighAT compared with the control. Compared with the control, HighAT decreased dry matter intake, milk yield, and energy-corrected milk yield in Exp. 3. Milk composition was not affected by treatment, except lactose percentage and yield were decreased by HighAT. Concentrations of iodine and bromide in milk were increased by HighAT compared with the control. Milk CHBr3 concentration and its organoleptic characteristics were not different between control and HighAT. Oregano had no effect on CH4 emission or lactational performance of the cows in Exp. 3. Overall, AT included at 0.50% in the ration of dairy cows can have a large mitigation effect on enteric CH4 emission, but dry matter intake and milk production may also decrease. There was a marked decrease in the CH4 mitigation potential of AT in the second half of Exp. 3, likely resulting from CHBr3 decay over time.


Assuntos
Origanum , Alga Marinha , Animais , Bovinos , Dieta/veterinária , Feminino , Fermentação , Lactação , Metano/metabolismo , Leite/química , Folhas de Planta/química , Rúmen/metabolismo , Silagem/análise
14.
J Dairy Sci ; 103(1): 410-432, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31733848

RESUMO

This study examined the effect of 3-nitrooxypropanol (3-NOP), a substance under investigation, on enteric methane (CH4) emission, rumen fermentation, lactational performance, sensory properties of milk, and the resumption of ovarian cyclicity in early-lactation dairy cows. Fifty-six multi- and primiparous Holstein cows, including 8 that were rumen cannulated, were used in a 15-wk randomized complete block design experiment. Cows were blocked based on parity and previous lactation milk yield (MY) or predicted MY, and within each block were randomly assigned to one of 2 treatments: (1) control (CON), administered no 3-NOP, or (2) 3-NOP applied at 60 mg/kg of feed dry matter (3-NOP). Enteric CH4 emission was measured during experimental wk 2, 6, 9, and 15, using the GreenFeed system. Dry matter intake (DMI) and MY data were collected daily throughout the experiment, and milk composition samples were collected 7 times during the experiment. Milk samples were collected from 14 to 60 (±2) d after calving, 3 d per week, and assayed for progesterone concentration to determine resumption of ovarian activity. Compared with CON, 3-NOP decreased daily CH4 emission by 26%, CH4 yield (CH4 per kg of DMI) by 21%, and CH4 emission intensity [CH4 per kg of MY or energy-corrected milk (ECM)] by 25%. Enteric emission of carbon dioxide was decreased by 5%, and hydrogen emission was increased 48-fold by 3-NOP. Inclusion of 3-NOP decreased concentration of total volatile fatty acids (by 9.3%) and acetate but increased butyrate molar proportion, ethanol, and formate concentrations in ruminal fluid. Dry matter intake was lower for 3-NOP compared with CON, but DMI expressed as a percentage of body weight was not different between treatments. Treatment had no effect on milk and ECM, body weight change, or body condition score. Milk composition and milk fat and protein yields were not affected by treatment, except that concentrations of short-chain fatty acids in milk were increased by 3-NOP. Nutrient digestibility and blood metabolites and hormones were not affected by 3-NOP, except that insulin was decreased by 3-NOP. There was no effect of 3-NOP on postpartum resumption of ovarian activity, including days to first and second luteal phases, length of first and second luteal phases, and interval from first to second luteal phase. Sensory properties of milk from cows fed 3-NOP and cheese made from that milk were not affected by treatment. In this experiment, 3-NOP decreased daily enteric CH4 emission, emission yield, and emission intensity, improved feed efficiency, and did not affect lactational performance or onset of ovarian activity in early-lactation dairy cows.


Assuntos
Bovinos/fisiologia , Lactação/efeitos dos fármacos , Ovário/fisiologia , Propanóis/farmacologia , Rúmen/efeitos dos fármacos , Animais , Peso Corporal , Dieta/veterinária , Ácidos Graxos Voláteis/metabolismo , Feminino , Fermentação , Metano/metabolismo , Leite/metabolismo , Gravidez , Rúmen/metabolismo
15.
J Dairy Sci ; 103(7): 6145-6156, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32278563

RESUMO

This experiment was designed to test the effect of inclusion rate of 3-nitrooxypropanol (3-NOP), a methane inhibitor, on enteric methane emissions in dairy cows. The study was conducted with 49 multiparous Holstein cows in a randomized complete block design in 2 phases; phase 1 was with 28 cows, and phase 2 with 21 cows. Cows were fed a basal total mixed ration ad libitum and were blocked based on days in milk, milk yield, and enteric methane emissions during a 14-d covariate period. Treatments were control (no 3-NOP) and 40, 60, 80, 100, 150, and 200 mg of 3-NOP/kg of feed dry matter. Following a 14-d adaptation period, enteric gaseous emissions (methane, carbon dioxide, and hydrogen) were measured using the GreenFeed system (C-Lock Inc., Rapid City, SD) over a 3-d period. Compared with the control, inclusion rate of 3-NOP quadratically decreased daily enteric methane emissions from 22 to 40%. Maximum mitigation effect was achieved with the 3 highest 3-NOP doses (with no statistical difference among 100, 150, and 200 mg/kg). The decrease in methane emission yield and emission intensity ranged from 16 to 36% and from 25 to 45%, respectively. Emissions of hydrogen quadratically increased 6- to 10-fold, compared with the control; the maximum increase was with 150 mg/kg 3-NOP. Treatment did not affect daily emissions of carbon dioxide, but a linear increase in carbon dioxide emission yield was observed with increasing 3-NOP doses. Dry matter intake and milk yield of the cows was not affected by 3-NOP. Milk fat concentration and yield were increased by 3-NOP due to increased concentration of de novo synthetized short-chain fatty acids in milk. Inclusion of 3-NOP also tended to increase milk urea nitrogen but had no other effects on milk components. In this short-term experiment, 3-NOP decreased enteric methane emissions without affecting dry matter intake or milk yield and increased milk fat in dairy cows. Maximum mitigation effect was achieved at 100 to 200 mg/kg of feed dry matter.


Assuntos
Bovinos/fisiologia , Dieta/veterinária , Metano/biossíntese , Propanóis/farmacologia , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Animais , Feminino , Lactação/efeitos dos fármacos , Leite/química , Rúmen/química
16.
J Dairy Sci ; 103(12): 11496-11502, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33041021

RESUMO

The objective of this study was to investigate the effect of 3-nitrooxypropanol (3-NOP), an enteric methane inhibitor under investigation, on short-term dry matter intake (DMI) in lactating dairy cows. Following a 1-wk adaptation period, 12 multiparous Holstein cows were fed a basal total mixed ration (TMR) containing increasing levels of 3-NOP during 5 consecutive, 6-d periods. The experiment was conducted in a tiestall barn. Feed bins were split in half by a solid divider, and cows simultaneously received the basal TMR supplemented with the following: (1) a placebo without 3-NOP or (2) 3-NOP included in the TMR at 30, 60, 90, or 120 mg/kg of feed dry matter (experimental periods 2, 3, 4, and 5, respectively). Cows received the control diet (basal TMR plus placebo premix) during experimental period 1. A premix containing ground corn grain, soybean oil, and dry molasses was used to incorporate 3-NOP in the ration. Cows were fed twice daily as follows: 60% of the daily feed allowance at 0800 h and 40% at 1800 h. Feed offered and refused was recorded at each feeding. During the morning feedings, each cow was offered either control or 3-NOP-treated TMR at 150% of her average intake during the previous 3 d. After collection of the evening refusals, cows received only the basal TMR without the premix until the next morning feeding. The test period for the short-term DMI data collection was defined from morning feeding to afternoon refusals collection during each day of each experimental period. Location (left or right) of the control and 3-NOP diets within a feed bin was switched every day during each period to avoid feed location bias. Dry matter intake of TMR during the test period was quadratically increased by 3-NOP compared with the control. Inclusion of 3-NOP at 120 mg/kg of feed dry matter resulted in decreased 10-h DMI compared with the lower 3-NOP doses, but was similar to the control. There was no effect of feed location (left or right) within feed bin on DMI. Data from this short-term study suggests that 3-NOP does not have a negative effect on DMI in lactating dairy cows.


Assuntos
Ração Animal , Suplementos Nutricionais , Metano/antagonistas & inibidores , Propanóis/farmacologia , Ração Animal/análise , Animais , Bovinos , Dieta/veterinária , Feminino , Lactação , Leite , Melaço
17.
J Dairy Sci ; 102(7): 6065-6075, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31030921

RESUMO

The objective of this experiment was to investigate the effects of a Saccharomyces cerevisiae-based direct-fed microbial product (SDM) and an exogenous enzyme product (ENZ) on enteric methane emission, milk yield and composition, total-tract digestibility of nutrients, ruminal fermentation, and nitrogen excretion and secretion in lactating dairy cows. Eighteen Holstein cows were used in a 3 × 3 Latin square design experiment with three 28-d periods. Treatments were (1) control (no additive), (2) 28 g of SDM/d per cow, or (3) 10 g of ENZ/d per cow. Treatments were top-dressed at the time of feeding. The basal diet consisted of (dry matter basis) 60% forage and 40% concentrates and contained 16.5% crude protein and 32.0% neutral detergent fiber. Treatments had no effect on enteric methane production, yield (methane per kg of dry matter intake, DMI), or intensity (methane per kg of energy-corrected milk yield). Carbon dioxide production was similar among treatments. Compared with control, SDM increased milk yield by 2 kg/d without affecting DMI or feed efficiency. Supplementation of the diet with ENZ did not affect DMI, milk yield, or feed efficiency. Concentrations and yields of milk fat, true protein, and lactose, and energy-corrected milk yield were not different among treatments. Neither SDM nor ENZ had an effect on total-tract digestibility of nutrients or nitrogen excretion and secretion. Concentration of total volatile fatty acids (VFA) in ruminal fluid was increased by both SDM and ENZ, and rumen pH was decreased by SDM compared with the control. At levels similar to the control DMI, the increased concentration of VFA in ruminal fluid of cows receiving SDM suggests an increased postruminal supply of energy and may partly explain the increased milk yield with that treatment. However, it is important to note that milk composition and energy-corrected milk yield were not affected by treatment.


Assuntos
Bovinos/metabolismo , Dieta/veterinária , Metano/biossíntese , Probióticos/administração & dosagem , Saccharomyces cerevisiae , Animais , Ácidos Graxos Voláteis/análise , Feminino , Fermentação , Lactação , Lactose/análise , Leite , Nitrogênio/metabolismo , Rúmen/metabolismo , Ruminação Digestiva , Saccharomyces cerevisiae/metabolismo
18.
J Dairy Sci ; 102(1): 388-394, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30527988

RESUMO

Three cafeteria feeding design experiments were conducted to test whether young ruminants have flavor preferences. Experiment 1 was with 11 Dorset × Suffolk weaned lambs of both sexes, aged 5 mo and averaging 47.5 (standard deviation = 5.8) kg of body weight. The lambs were offered a choice of 5 flavored concentrate premixes (FCP) and an unflavored control for 5 min 4 times over 10 d. The FCP were prepared by mixing 200 to 300 g/t (as-is basis) of synthetic flavors (vanilla, milky, spicy/fenugreek, red summer fruits, and molasses) into a basal diet. The unflavored control and the milky flavor were consumed in greater amounts than all other flavors at 83.9 and 65.8 g/test, respectively. The consumption rate of FCP (g/min) was similar among treatments. Lambs spent more time consuming the milky flavor and the control at 123 and 144 s/test, respectively, compared with all other FCP (average of 65 s/test). In experiment 2, 12 weaned female Holstein Friesian calves (56-68 d of age) averaging 75.8 kg (standard deviation = 8.45) of body weight were offered a choice of 4 FCP (vanilla, milky, spicy/fenugreek, and red summer fruits) at an inclusion rate of 150 to 200 g/t (as-is basis) and the unflavored control for 5 min 4 times over 10 d. The average consumption rate was 27.8 g/min, and there were no differences among FCP. In experiment 3, a choice of 4 FCP with 2 different flavor combinations (vanilla-fenugreek and milky-vanilla) included at 75 g/t (as-is basis; low) or 150 g/t (high) was offered to a total of 12 weaned female Holstein Friesian calves (47-62 d of age) with an average body weight of 65.3 kg (standard deviation = 7.91). The FCP were offered daily for 14 d for 30 to 60 min/d. Vanilla-fenugreek (low) was consumed less at 57.5 g/test per calf compared with the other FCP (average of 87.5 g/test per calf). There were no other differences among FCP in experiment 3. Overall, compared with the control, flavors used in the present experiments did not affect feed intake of weaned lambs and calves. Other factors, such as taste, sight, texture of the feed, effect of the dams as previous experience (via maternal ingestion, which influences neonatal feeding), and their interactions, may also play a role in flavor preferences of young ruminants.


Assuntos
Ração Animal/análise , Bovinos/fisiologia , Ingestão de Alimentos , Ovinos/fisiologia , Animais , Peso Corporal , Comportamento de Escolha , Dieta/veterinária , Feminino , Aromatizantes , Masculino , Paladar , Desmame
19.
J Dairy Sci ; 102(10): 8999-9016, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31421886

RESUMO

The objective of this experiment was to evaluate productive and reproductive effects of replacing solvent-extracted soybean meal (SSBM) with extruded soybean meal (ESBM) in a total mixed ration for early-lactation dairy cows. Thirty-four Holstein cows (12 primiparous and 22 multiparous) were used in a randomized complete block design experiment with 17 cows per treatment. Feeding was ad libitum for 5 to 10% refusals. A fresh-cow diet was fed the first 21 d in milk followed by a lactation diet from 22 to 60 d in milk. Milk and dry matter intake data were collected throughout the experiment, and samples were collected for blood chemistry and amino acid profile, nutrient digestibility, nitrogen utilization, and enteric methane emission using the GreenFeed system (C-Lock Inc., Rapid City, SD). Dry matter intake, milk yield, and feed efficiency were not different between SSBM and ESBM. Energy-corrected milk yield and efficiency were also not different between diets. Diet had no effect on milk composition, except that milk true protein yield was decreased by ESBM. Enteric methane emission, yield, and intensity were not different between SSBM and ESBM. Because of its greater fat content, ESBM triggered expected changes in milk fatty acid (FA) profile: decreased sum of C16, saturated, and odd- and branched-chain FA and increased sum of preformed FA, polyunsaturated, and trans FA. The ESBM diet increased or tended to increase some essential amino acids in plasma. In this study, ESBM did not affect dry matter intake and did not improve lactational performance or onset of ovarian function in early-lactation dairy cows, and it decreased milk protein yield, possibly due to greater unsaturated FA intake compared with SSBM.


Assuntos
Bovinos/fisiologia , Ácidos Graxos/análise , Glycine max , Proteínas do Leite/análise , Leite/metabolismo , Reprodução , Ração Animal/análise , Animais , Indústria de Laticínios , Dieta/veterinária , Digestão , Ingestão de Alimentos , Feminino , Lactação , Metano/metabolismo , Leite/química , Rúmen/metabolismo
20.
J Dairy Sci ; 101(6): 5006-5019, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29525315

RESUMO

Brown midrib brachytic dwarf pearl millet (Pennisetum glaucum) forage harvested at the flag leaf visible stage and subsequently ensiled was investigated as a partial replacement of corn silage in the diet of high-producing dairy cows. Seventeen lactating Holstein cows were fed 2 diets in a crossover design experiment with 2 periods of 28 d each. Both diets had forage:concentrate ratios of 60:40. The control diet (CSD) was based on corn silage and alfalfa haylage, and in the treatment diet, 20% of the corn silage dry matter (corresponding to 10% of the dietary dry matter) was replaced with pearl millet silage (PMD). The effects of partial substitution of corn silage with pearl millet silage on dry matter intake, milk yield, milk components, fatty acid profile, apparent total-tract digestibility of nutrients, N utilization, and enteric methane emissions were analyzed. The pearl millet silage was higher in crude protein and neutral detergent fiber and lower in lignin and starch than the corn silage. Diet did not affect dry matter intake or energy-corrected milk yield, which averaged 46.7 ± 1.92 kg/d. The PMD treatment tended to increase milk fat concentration, had no effect on milk fat yield, and increased milk urea N. Concentrations and yields of milk protein and lactose were not affected by diet. Apparent total-tract digestibility of dry matter decreased from 66.5% in CSD to 64.5% in PMD. Similarly, organic matter and crude protein digestibility was decreased by PMD, whereas neutral- and acid-detergent fiber digestibility was increased. Total milk trans fatty acid concentration was decreased by PMD, with a particular decrease in trans-10 18:1. Urinary urea and fecal N excretion increased with PMD compared with CSD. Milk N efficiency decreased with PMD. Carbon dioxide emission was not different between the diets, but PMD increased enteric methane emission from 396 to 454 g/d and increased methane yield and intensity. Substituting corn silage with brown midrib dwarf pearl millet silage at 10% of the diet dry matter supported high milk production in dairy cows. When planning on farm forage production strategies, brown midrib dwarf pearl millet should be considered as a viable fiber source.


Assuntos
Ração Animal/análise , Bovinos/fisiologia , Pennisetum/metabolismo , Silagem/análise , Animais , Bovinos/crescimento & desenvolvimento , Dieta/veterinária , Fibras na Dieta/análise , Fibras na Dieta/metabolismo , Digestão , Fazendas , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Feminino , Lactação , Medicago sativa/química , Medicago sativa/metabolismo , Metano/biossíntese , Leite/química , Leite/metabolismo , Pennisetum/química , Rúmen/metabolismo , Silagem/intoxicação , Zea mays/química , Zea mays/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA