RESUMO
Due to the COVID-19 pandemic, many transport kits have been manufactured to preserve and transport nasopharyngeal swab samples (NPSs) from patients. However, there is no information on the performance of the different virus transport media (VTM) used in COVID-19 diagnosis in the population of Santiago de Chile. We compared the RT-qPCR amplification profile of five different viral transport kit mediums, including DNA/RNA Shield™, NAT, VTM-N, Ezmedlab™, and phosphate-buffered saline (PBS), for NPSs from Central Metropolitan Health Service, Santiago, Chile. The DNA/RNA Shield™ medium showed a better performance in terms of Cq and RFU values for the internal reference RNase P and viral ORF1ab probes. By contrast, the PBS transport medium registered higher Cq values for the viral and reference gene, compared to the other VTM. DNA/RNA Shield™ shows higher relative fluorescence units (RFUs) and lower Cq values for the reference gene. Collectively, our results suggest that the PBS medium could compromise the sample diagnosis because of its lower RT-qPCR performance. The NAT, Ezmedlab and VTM-N, and DNA/RNA Shield™ media show acceptable RT-qPCR parameters and, consequently, seem suitable for use in COVID-19 diagnosis.
Assuntos
COVID-19 , COVID-19/diagnóstico , Teste para COVID-19 , Chile , Meios de Cultura , Humanos , Nasofaringe , Pandemias , RNA , RNA Viral/análise , RNA Viral/genética , Reação em Cadeia da Polimerase em Tempo Real , SARS-CoV-2/genética , Manejo de Espécimes/métodosRESUMO
The early detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) using the real-time quantitative polymerase chain reaction (RT-qPCR) as a gold-standard molecular tool has allowed to test and trace the viral spread and the isolation of COVID-19-infected patients. The detection capacity of viral and internal genes is an essential parameter to consider and analyze during the assay. In this study, we analyze the performance of the two commercial RT-qPCR kits used in Chile, TaqMan™ 2019-nCoV Control Kit v1 (Thermo Fisher) and MaxCov19 (TAAG Genetics), for the COVID-19 diagnosis from nasopharyngeal swab samples (NPSs). Our results show a lower sensitivity of the TAAG kit compared to the Thermo Fisher kit, even in the detection of SARS-CoV-2 mutations associated with its variants. This study reinforces the relevance of evaluating the performance of RT-qPCR kits before being used massively since those with lower sensitivity can generate false negatives and produce outbreaks of local infections.
RESUMO
Introduction: As the SARS-CoV-2 continues to evolve, new variants pose a significant threat by potentially overriding the immunity conferred by vaccination and natural infection. This scenario can lead to an upswing in reinfections, amplified baseline epidemic activity, and localized outbreaks. In various global regions, estimates of breakthrough cases associated with the currently circulating viral variants, such as Omicron, have been reported. Nonetheless, specific data on the reinfection rate in Chile still needs to be included. Methods: Our study has focused on estimating COVID-19 reinfections per wave based on a sample of 578,670 RT-qPCR tests conducted at the University of Santiago of Chile (USACH) from April 2020 to July 2022, encompassing 345,997 individuals. Results: The analysis reveals that the highest rate of reinfections transpired during the fourth and fifth COVID-19 waves, primarily driven by the Omicron variant. These findings hold despite 80% of the Chilean population receiving complete vaccination under the primary scheme and 60% receiving at least one booster dose. On average, the interval between initial infection and reinfection was found to be 372 days. Interestingly, reinfection incidence was higher in women aged between 30 and 55. Additionally, the viral load during the second infection episode was lower, likely attributed to Chile's high vaccination rate. Discussion: This study demonstrates that the Omicron variant is behind Chile's highest number of reinfection cases, underscoring its potential for immune evasion. This vital epidemiological information contributes to developing and implementing effective public health policies.
Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Feminino , Adulto , Pessoa de Meia-Idade , SARS-CoV-2/genética , COVID-19/diagnóstico , COVID-19/epidemiologia , Chile/epidemiologia , Reinfecção/epidemiologiaRESUMO
The variant of concern (VOC) SARS-CoV-2 Omicron (B.1.1529) has been described as a highly contagious variant but less virulent than the current variant being monitored (VBM) Delta (B.1.617.2), causing fewer cases of hospitalizations, symptomatology, and deaths associated with COVID-19 disease. Although the epidemiological comparison of both variants has been previously reported in other countries, no report indicates their behavior and severity of infection in Chile. In this work, we report for the first time the effect of the Omicron and Delta variants in a cohort of 588 patients from the Hospital de Urgencia Asistencia pública (HUAP), a high-complexity health center in Santiago, Chile. This report is framed at the beginning of Chile's third wave of the COVID-19 pandemic, with a marked increase in the Omicron variant and a decrease in the circulating Delta variant. Our results indicated a similar proportion of patients with a complete vaccination schedule for both variants. However, the Delta variant was associated with a higher prevalence of hospitalization and more significant symptomatology associated with respiratory distress. On the other hand, our data suggest that vaccination is less effective in preventing infection by the Omicron variant. This antecedent, with a low severity but high contagiousness, suggests that the Omicron variant could even collapse the primary health care service due to the high demand for health care.
Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/epidemiologia , Chile/epidemiologia , PandemiasRESUMO
Introduction: The COVID-19 pandemic is still in force, causing global public health challenges and threats. Although vaccination and herd immunity have proven to be the most efficient way to control the pandemic, massive and early testing of patients using the RT-qPCR technique is crucial for constant genomic surveillance. The appearance of variants of SARS-CoV-2 with new mutations can reduce the efficiency of diagnostic detection. In this sense, several commercial RT-qPCR kits have been the target of extensive analysis because low assay performance could lead to false-negative diagnoses. Methods: In this study, we evaluated the performance of three commercial RT-qPCR kits; Thermo Fisher (TaqMan 2019-nCoV Assay Kit v1), BGI and Roche (LightCycler® Multiplex RNA Virus Master) used for the diagnosis of COVID-19 throughout the pandemic in Santiago de Chile. Results: Under our best assay conditions, we found significant differences in Cq amplification values for control and viral probes, against the same nasopharyngeal swab samples (NPSs). In addition, in some cases, the sensitivity of the RT-qPCR kits decreased against viral variants. Conclusion: Our study suggests evaluating the RT-qPCR kits used to detect SARS-CoV-2 because variants such as Omicron, which has several mutations, can compromise their detection and underestimate viral circulation.
Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Pandemias , COVID-19/diagnóstico , Chile , Nasofaringe , RNA Viral/genética , RNA Viral/análise , Sensibilidade e EspecificidadeRESUMO
Vaccine administration is one of the most efficient ways to control the current coronavirus disease 2019 (COVID-19) pandemic. However, the appearance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants can avoid the immunity generated by vaccines. Thus, in patients with a complete vaccine schedule, the infection by SARS-CoV-2 may cause severe, mild, and asymptomatic manifestations of the disease. In this case report, we describe for the first time the clinical symptoms of four patients (three symptomatic; one asymptomatic) from Santiago of Chile, with a complete vaccination schedule with two doses of CoronaVac (Sinovac Life Science) infected with the variant of interest (VOI) B.1.621 (Mu). They were compared with four unvaccinated patients, who had a higher prevalence of symptoms after infection compared to vaccinated patients. In the CoronaVac-vaccinated group, an 80-year-old patient who registered various comorbidities required Invasive mechanical ventilation for 28 days with current home medical recovery discharge. By contrast, in the unvaccinated group, a 71-year-old presented more symptoms with more than 45 days of Invasive mechanical ventilation, which continues to date, presenting greater lung damage than the vaccinated hospitalized patient. This first report evidence differences in the clinical symptomatology of patients vaccinated and non-vaccinated infected with the VOI B.1.621 (Mu) and suggest the protective effects of CoronaVac against this variant.
Assuntos
COVID-19 , Vacinas , Idoso , Idoso de 80 Anos ou mais , Vacinas contra COVID-19 , Chile , Humanos , SARS-CoV-2 , VacinaçãoRESUMO
The current COVID-19 pandemic is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Many countries have reported the experience of at least two contagion waves, describing associated mortality rates and population behavior. The analysis of the effect of this pandemic in different localities can provide valuable information on the key factors to consider in the face of future massive infectious diseases. This work describes the first retrospective and comparative study about behavior during the first and second waves of the COVID-19 pandemic in Chile from a primary Healthcare Center. From 19,313 real-time quantitative PCR (RT-qPCR) tests assessed, the selected 1,694 positive diagnostics showed a decrease in mortality rate in the second wave (0.6%) compared with the first (4.6%). In addition, we observed that infections in the second wave were mainly in young patients with reduced comorbidities. The population with a complete vaccination schedule shows a decrease in the duration of symptoms related to the disease, and patients with more comorbidities tend to develop severe illness. This report provides evidence to partially understand the behavior and critical factors in the severity of the COVID-19 pandemic in the population of Santiago of Chile.
Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , Chile/epidemiologia , Humanos , Estudos Longitudinais , Pandemias , Atenção Primária à Saúde , Estudos RetrospectivosRESUMO
Timely detection of severe acute respiratory syndrome due to coronavirus 2 (SARS-CoV-2) by reverse transcription quantitative polymerase chain reaction (RT-qPCR) has been the gold- strategy for identifying positive cases during the current pandemic. However, faster and less expensive methodologies are also applied for the massive diagnosis of COVID-19. In this way, the rapid antigen test (RAT) is widely used. However, it is necessary to evaluate its detection efficiency considering the current pandemic context with the circulation of new viral variants. In this study, we evaluated the sensitivity and specificity of RAT (SD BIOSENSOR, South Korea), widely used for testing and SARS-CoV-2 diagnosis in Santiago of Chile. The RAT showed a 90% (amplification range of 20 ≤ Cq <25) and 10% (amplification range of 25 ≤ Cq <30) of positive SARS-CoV-2 cases identified previously by RT-qPCR. Importantly, a 0% detection was obtained for samples within a Cq value>30. In SARS-CoV-2 variant detection, RAT had a 42.8% detection sensitivity in samples with RT-qPCR amplification range 20 ≤ Cq <25 containing the single nucleotide polymorphisms (SNP) K417N/T, N501Y and E484K, associated with beta or gamma SARS-CoV-2 variants. This study alerts for the special attention that must be paid for the use of RAT at a massive diagnosis level, especially in the current scenario of appearance of several new SARS-CoV-2 variants which could generate false negatives and the compromise of possible viral outbreaks.
Assuntos
COVID-19 , SARS-CoV-2 , Teste para COVID-19 , Humanos , PandemiasRESUMO
Active immunotherapy against cancer is based on immune system stimulation, triggering efficient and long-lasting antigen-specific immune responses. Immunization strategies using whole dead cells from tumor tissue, containing specific antigens inside, have become a promising approach, providing efficient lymphocyte activation through dendritic cells (DCs). In this work, we generate whole dead tumor cells from CT26, E.G7, and EL4 live tumor cells as antigen sources, which termed immunogenic cell bodies (ICBs), generated by a simple and cost-efficient starvation-protocol, in order to determine whether are capable of inducing a transversal anticancer response regardless of the tumor type, in a similar way to what we describe previously with B16 melanoma. We evaluated the anticancer effects of immunization with doses of ICBs in syngeneic murine tumor models. Our results showed that mice's immunization with ICBs-E.G7 and ICBs-CT26 generate 18% and 25% of tumor-free animals, respectively. On the other hand, all carrying tumor-animals and immunized with ICBs, including ICBs-EL4, showed a significant delay in their growth compared to not immunized animals. These effects relate to DCs maturation, cytokine production, increase in CD4+T-bet+ and CD4+ROR-γt+ population, and decrease of T regulatory lymphocytes in the spleen. Altogether, our data suggest that whole dead tumor cell-based cancer immunotherapy generated by a simple starvation protocol is a promising way to develop complementary, innovative, and affordable antitumor therapies in a broad spectrum of tumors.