Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Infection ; 50(6): 1591-1595, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36053480

RESUMO

PURPOSE: Diphtheria, still present in many countries of the world, is caused by toxigenic strains of species of the Corynebacterium diphtheriae complex, mainly Corynebacterium diphtheriae and the emerging zoonotic pathogen C. ulcerans. The immunoprecipitation test according to Elek is the gold standard for detection of the major virulence factor diphtheria toxin (DT) in toxigenic corynebacteria. Due to its sophisticated methodological requirements, the classical Elek test is performed mainly by specialized reference laboratories. It was revealed that the current modification of the Elek test does not detect the toxin in weakly toxigenic isolates. Therefore, a more robust method for detecting free DT is urgently needed, especially for toxigenic C. ulcerans strains which are known to produce often much lower amounts of DT than C. diphtheriae. METHODS: Thirty-one tox-positive C. ulcerans isolates with a negative standard Elek test result previously determined as NTTB (non-toxigenic tox bearing) were re-analyzed in this study using a modified immunoprecipitation method optimized regarding different parameters including type and concentration of antitoxin, medium volume, inoculum distance from the antitoxin disk and position of controls. RESULTS: All 31 C. ulcerans strains tested positive in the optimized Elek test. CONCLUSION: Only with a reliable and easy-to-handle method for detecting the toxigenicity of C. ulcerans, it is possible to assess the etiological role of this emerging zoonotic bacterium in human pathology.


Assuntos
Antitoxinas , Corynebacterium diphtheriae , Difteria , Humanos , Difteria/diagnóstico , Difteria/microbiologia , Toxina Diftérica , Corynebacterium
2.
Antonie Van Leeuwenhoek ; 113(8): 1225-1239, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32500295

RESUMO

The genus Corynebacterium includes species of biotechnological, medical and veterinary importance. An atypical C. ulcerans strain, W25, was recently isolated from a case of necrotizing lymphadenitis in a wild boar. In this study, we have analysed the genome sequence of this strain and compared the phenotypic and virulence properties with other corynebacterial pathogens. Phylogenomic analyses revealed that strain W25 belongs to a novel species along with PO100/5 and KL1196. The latter strains were isolated from a pig and a roe deer, respectively; hence, this species appears to be associated to animals. The isolate W25 is likely a non-toxigenic tox gene bearing strain and may have compromised abilities to adhere to pharyngeal and laryngeal epithelial cells due to potential loss of the gene functions in spaBC and spaDEF pilus gene clusters. A number of corynebacterial virulence genes are present including pld encoding phospholipase D. Therefore, this strain may be able to cause severe invasive infections in animals and zoonotic infections in humans.


Assuntos
Infecções por Corynebacterium/microbiologia , Infecções por Corynebacterium/veterinária , Corynebacterium/classificação , Corynebacterium/isolamento & purificação , Filogenia , Animais , Toxinas Bacterianas/genética , Corynebacterium/genética , Corynebacterium/patogenicidade , Cervos , Fímbrias Bacterianas/genética , Genoma Bacteriano , Humanos , Família Multigênica , Suínos , Virulência/genética , Fatores de Virulência/genética , Zoonoses/microbiologia
3.
Microorganisms ; 12(7)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-39065064

RESUMO

In previous studies, it was demonstrated that Corynebacterium pseudodiphtheriticum 090104, isolated from the human nasopharynx, modulates respiratory immunity, improving protection against infections. Here, the antagonistic effect of the 090104 strain on respiratory pathogens, including Streptococcus pneumoniae, Staphylococcus aureus, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii, was explored. In a series of in vitro studies, the capacity of C. pseudodiphtheriticum 090104, its bacterium-like particles, and its culture supernatants to coaggregate, inhibit the growth, and change the virulent phenotype of pathogenic bacteria was evaluated. The results showed that the 090104 strain was able to exert a bacteriostatic effect on K. pneumoniae and S. pneumoniae growth. In addition, C. pseudodiphtheriticum 090104 coaggregated, inhibited biofilm formation, and induced phenotypic changes in all the respiratory pathogens evaluated. In conclusion, this work demonstrated that, in addition to its beneficial effects exerted by host-microbe interactions, C. pseudodiphtheriticum 090104 can enhance protection against respiratory pathogens through its microbe-microbe interactions. The mechanisms involved in such interactions should be evaluated in future research.

4.
Vaccines (Basel) ; 12(4)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38675794

RESUMO

Previously, it was shown that intranasally (i.n.) administered Corynebacterium pseudodiphtheriticum 090104 (Cp) or CP-derived bacterium-like particles (BLPs) improve the immunogenicity of the pneumococcal conjugate vaccine (PCV). This work aimed to deepen the characterization of the adjuvant properties of Cp and CP-derived BLPs for their use in the development of pneumococcal vaccines. The ability of Cp and CP-derived BLPs to improve both the humoral and cellular specific immune responses induced by i.n. administered polysaccharide-based commercial pneumococcal vaccine (Pneumovax 23®) and the chimeric recombinant PSPF (PsaA-Spr1875-PspA-FliC) protein was evaluated, as well as the protection against Streptococcus pneumoniae infection in infant mice. Additionally, whether the immunization protocols, including Cp and CP-derived BLPs, together with the pneumococcal vaccines can enhance the resistance to secondary pneumococcal pneumonia induced after inflammatory lung damage mediated by the activation of Toll-like receptor 3 (TLR3) was assessed. The results showed that both Cp and CP-derived BLPs increased the immunogenicity and protection induced by two pneumococcal vaccines administered through the nasal route. Of note, the nasal priming with the PSPF T-dependent antigen co-administered with Cp or CP-derived BLPs efficiently stimulated humoral and cellular immunity and increased the resistance to primary and secondary pneumococcal infections. The CP-derived BLPs presented a stronger effect than live bacteria. Given safety concerns associated with live bacterium administration, especially in high-risk populations, such as infants, the elderly, and immunocompromised patients, BLPs emerge as an attractive mucosal adjuvant to improve the host response to pneumococcal infections and to enhance the vaccines already in the market or in development.

5.
Open Res Eur ; 3: 62, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37645492

RESUMO

Background: In industrialised countries diphtheria is a rare but still life-threatening disease with a recent increase in cases due to migration and zoonotic aspects. Due to the rarity of the disease, laboratory diagnosis of diphtheria is often carried out in central reference laboratories and involves the use of sophisticated equipment and specially trained personnel. The result of the diphtheria agent detection can usually be obtained after 5-6 days or more. Authors suggest a Lateral Flow Immunoassay (LFIA)-based laboratory algorithm for the diagnosis of diphtheria, which may render less time in issuing a result and could promote the testing be performed in laboratories closer to the patient. Methods: LFIA for diphtheria toxin (DT) detection was designed using a pair of monoclonal antibodies to receptor-binding subunit B of the DT, and validated with 322 corynebacterial cultures as well as 360 simulated diphtheria specimens. Simulated diphtheria specimens were obtained by spiking of human pharyngeal samples with test strains of corynebacteria. The simulated specimens were plated on selective tellurite agar and after 18-24 hours of incubation, grey/black colonies characteristic of the diphtheria corynebacteria were examined for the DT using LFIA. Results: The diagnostic sensitivity of the LFIA for DT detection on bacterial cultures was 99.35%, and the specificity was 100%. Also, the LFIA was positive for all pharyngeal samples with toxigenic strains and negative for all samples with non-toxigenic strains. For setting LFIA, a 6-hour culture on Elek broth was used; thus, under routine conditions, the causative agent of diphtheria could be detected within two working days after plating of the clinical specimen on the tellurite medium of primary inoculation. Conclusions: The availability of such a simple and reliable methodology will speed up and increase the accuracy of diphtheria diagnosis globally.

6.
Front Immunol ; 14: 1110001, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36798125

RESUMO

The female reproductive tract (FRT) and remote/versatile organs in the body share bidirectional communication. In this review, we discuss the framework of the "FRT-organ axes." Each axis, namely, the vagina-gut axis, uterus-gut axis, ovary-gut axis, vagina-bladder axis, vagina-oral axis, uterus-oral axis, vagina-brain axis, uterus-brain axis, and vagina-joint axis, is comprehensively discussed separately. Each axis could be involved in the pathogenesis of not only gynecological diseases but also diseases occurring apart from the FRT. Although the microbiota is clearly a key player in the FRT-organ axes, more quantitative insight into the homeostasis of the microbiota could be provided by host function measurements rather than current microbe-centric approaches. Therefore, investigation of the FRT-organ axes would provide us with a multicentric approach, including immune, neural, endocrine, and metabolic aspects, for understanding the homeostatic mechanism of women's bodies. The framework of the FRT-organ axes could also provide insights into finding new therapeutic approaches to maintain women's health.


Assuntos
Genitália Feminina , Microbiota , Feminino , Humanos , Genitália Feminina/metabolismo , Útero , Vagina , Ovário
7.
Vaccines (Basel) ; 11(3)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36992195

RESUMO

Previously, we demonstrated that nasally administered Corynebacterium pseudodiphtheriticum 090104 (Cp) or its bacterium-like particles (BLPs) increase the resistance of mice against bacterial and viral respiratory pathogens by modulating the innate immunity. In this work, we evaluated the ability of Cp and BLPs to stimulate alveolar macrophages, and to enhance the humoral immune response induced by a commercial vaccine against Streptococcus pneumoniae. In the first set of experiments, Cp or the BLPs were incubated with primary cultures of murine alveolar macrophages and the phagocytic activity, and the production of cytokines was evaluated. The results revealed that Cp and BLPs were efficiently phagocyted by respiratory macrophages and that both treatments triggered the production of TNF-α, IFN-γ, IL-6, and IL-1ß. In the second set of experiments, 3-week-old Swiss mice were intranasally immunized at days 0, 14, and 28 with the pneumococcal vaccine Prevenar®13 (PCV), Cp + PCV, or BLPs + PCV. On day 33, samples of bronco-alveolar lavages (BAL) and serum were collected for the study of specific antibodies. In addition, immunized mice were challenged with S. pneumoniae serotypes 6B or 19F on day 33 and sacrificed on day 35 (day 2 post-infection) to evaluate the resistance to the infection. Both Cp + PCV and BLPs + PCV groups had higher specific serum IgG and BAL IgA antibodies than the PCV control mice. In addition, the mice that were immunized with Cp + PCV or BLPs + PCV had lower lung and blood pneumococcal cell counts as well as lower levels of BAL albumin and LDH, indicating a reduced lung damage compared to the control mice. Improved levels of anti-pneumococcal antibodies were also detected in the serum and BAL samples after the challenges with the pathogens. The results demonstrated that C. pseudodiphtheriticum 090104 and its bacterium-like particles are capable of stimulating the respiratory innate immune system serving as adjuvants to potentiate the adaptive humoral immune response. Our study is a step forward in the positioning of this respiratory commensal bacterium as a promising mucosal adjuvant for vaccine formulations aimed at combating respiratory infectious diseases.

8.
Antibiotics (Basel) ; 12(10)2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37887236

RESUMO

The Ligilactobacillus salivarius 7247 (LS7247) strain, originally isolated from a healthy woman's intestines and reproductive system, has been studied for its probiotic potential, particularly against Salmonella Enteritidis (SE) and Salmonella Typhimurium (ST) as well as its potential use in synbiotics. LS7247 showed high tolerance to gastric and intestinal stress and effectively adhered to human and animal enterocyte monolayers, essential for realizing its probiotic properties. LS7247 showed high anti-Salmonella activity. Additionally, the cell-free culture supernatant (CFS) of LS7247 exhibited anti-Salmonella activity, with a partial reduction upon neutralization with NaOH (p < 0.05), suggesting the presence of anti-Salmonella factors such as lactic acid (LA) and bacteriocins. LS7247 produced a high concentration of LA, reaching 124.0 ± 2.5 mM after 48 h of cultivation. Unique gene clusters in the genome of LS7247 contribute to the production of Enterolysin A and metalloendopeptidase. Notably, LS7247 carries a plasmid with a gene cluster identical to human intestinal strain L. salivarius UCC118, responsible for class IIb bacteriocin synthesis, and a gene cluster identical to porcine strain L. salivarius P1ACE3, responsible for nisin S synthesis. Co-cultivation of LS7247 with SE and ST pathogens reduced their viability by 1.0-1.5 log, attributed to cell wall damage and ATP leakage caused by the CFS. For the first time, the CFS of LS7247 has been shown to inhibit adhesion of SE and ST to human and animal enterocytes (p < 0.01). The combination of Actigen prebiotic and the CFS of LS7247 demonstrated a significant combined effect in inhibiting the adhesion of SE and ST to human and animal enterocytes (p < 0.001). These findings highlight the potential of using the LS7247 as a preventive strategy and employing probiotics and synbiotics to combat the prevalence of salmonellosis in animals and humans caused by multidrug resistant (MDR) strains of SE and ST pathogens.

9.
Antibiotics (Basel) ; 12(3)2023 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-36978338

RESUMO

LF3872 was isolated from the milk of a healthy lactating and breastfeeding woman. Earlier, the genome of LF3872 was sequenced, and a gene encoding unique bacteriocin was discovered. We have shown here that the LF3872 strain produces a novel thermolabile class III bacteriolysin (BLF3872), exhibiting antimicrobial activity against antibiotic-resistant Staphylococcus aureus strains. Sequence analysis revealed the two-domain structural (lysozyme-like domain and peptidase M23 domain) organization of BLF3872. At least 25% residues of this protein are expected to be intrinsically disordered. Furthermore, BLF3872 is predicted to have a very high liquid-liquid phase separation. According to the electron microscopy data, the bacterial cells of LF3872 strain form co-aggregates with the S. aureus 8325-4 bacterial cells. LF3872 produced bacteriolysin BLF3872 that lyses the cells of the S. aureus 8325-4 mastitis-inducing strain. The sensitivity of the antibiotic-resistant S. aureus collection strains and freshly isolated antibiotic-resistant strains was tested using samples from women with lactation mastitis; the human nasopharynx and oral cavity; the oropharynx of pigs; and the cows with a diagnosis of clinical mastitis sensitive to the lytic action of the LF3872 strain producing BLF3872. The co-cultivation of LF3872 strain with various antibiotic-resistant S. aureus strains for 24 h reduced the level of living cells of these pathogens by six log. The LF3872 strain was found to be able to co-aggregate with all studied S. aureus strains. The cell-free culture supernatant of LF3872 (CSLF3872) induced S. aureus cell damage and ATP leakage. The effectiveness of the bacteriolytic action of LF3872 strain did not depend on the origin of the S. aureus strains. The results reported here are important for the creation of new effective drugs against antibiotic-resistant strains of S. aureus circulating in humans and animals.

10.
Biomolecules ; 13(12)2023 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-38136611

RESUMO

Previously, the protective role of the S-layer protein 2 (Slp2) of the vaginal Lactobacillus crispatus 2029 (LC2029) strain against foodborne pathogens Campylobacter jejuni, Salmonella enterica serovar Enteritidis, and Escherichia coli O157:H was demonstrated. We demonstrate the new roles of the Slp2-positive LC2029 strain and soluble Slp2 against C. albicans infections. We show that LC2029 bacteria can adhere to the surface of the cervical epithelial HeLa cells, prevent their contact with C. albicans, and block yeast transition to a pathogenic hyphal form. Surface-bound Slp2 provides the ability for LC2029 to co-aggregate with various C. albicans strains, including clinical isolates. C. albicans-induced necrotizing epithelial damage is reduced by colonization with the Slp2-positive LC2029 strain. Slp2 inhibits the adhesion of various strains of C. albicans to different human epithelial cells, blocks yeast transition to a pathogenic hyphal form, and prevents the colonization and pathogenic infiltration of mucosal barriers. Only Slp2 and LC2029 bacteria stimulate the production of protective human ß-defensin 3 in various epithelial cells. These findings support the anti-Candida albicans potential of the probiotic LC2029 strain and Slp2 and form the basis for further research on their ability to prevent and manage invasive Candida infections.


Assuntos
Candidíase , Lactobacillus crispatus , Feminino , Humanos , Candida albicans , Células HeLa , Células Epiteliais/metabolismo
11.
Antibiotics (Basel) ; 13(1)2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38247590

RESUMO

Limosilactobacillus fermentum strain 3872 (LF3872) was originally isolated from the breast milk of a healthy woman during lactation and the breastfeeding of a child. Ligilactobacillus salivarius strain 7247 (LS7247) was isolated at the same time from the intestines and reproductive system of a healthy woman. The genomes of these strains contain genes responsible for the production of peptidoglycan-degrading enzymes and factors that increase the permeability of the outer membrane of Gram-negative pathogens. In this work, the anti-Salmonella and intestinal homeostatic features of the LF3872 and LS7247 consortium were studied. A multi-drug resistant (MDR) strain of Salmonella enteritidis (SE) was used in the experiments. The consortium effectively inhibited the adhesion of SE to intact and activated human, porcine, and chicken enterocytes and reduced invasion. The consortium had a bactericidal effect on SE in 6 h of co-culturing. A gene expression analysis of SE showed that the cell-free supernatant (CFS) of the consortium inhibited the expression of virulence genes critical for the colonization of human and animal enterocytes. The CFS stimulated the production of an intestinal homeostatic factor-intestinal alkaline phosphatase (IAP)-in Caco-2 and HT-29 enterocytes. The consortium decreased the production of pro-inflammatory cytokines IL-8, TNF-α, and IL-1ß, and TLR4 mRNA expression in human and animal enterocytes. It stimulated the expression of TLR9 in human and porcine enterocytes and stimulated the expression of TLR21 in chicken enterocytes. The consortium also protected the intestinal barrier functions through the increase of transepithelial electrical resistance (TEER) and the inhibition of paracellular permeability in the monolayers of human and animal enterocytes. The results obtained suggest that a LF3872 and LS7247 consortium can be used as an innovative feed additive to reduce the spread of MDR SE among the population and farm animals.

12.
Diagnostics (Basel) ; 12(9)2022 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-36140605

RESUMO

Since diphtheria toxin (DT) is the main virulence factor of Corynebacterium diphtheriae and C. ulcerans, the detection of DT in corynebacterial cultures is of utmost importance in the laboratory diagnosis of diphtheria. The need to measure the level of DT production (LTP) arises when studying the virulence of a strain for the purpose of diphtheria agent monitoring. To determine the LTP of diphtheria agents, an immunoassay based on monoclonal antibodies (mAbs) has been developed. A pair of mAbs specific to the fragment B of DT was selected, which makes it possible to detect DT in a sandwich ELISA with a detection limit of DT less than 1 ng/mL. Sandwich ELISA was used to analyze 218 liquid culture supernatants of high-, low- and non-toxigenic strains of various corynebacteria. It was shown that the results of ELISA are in good agreement with the results of PCR and the Elek test for the tox gene and DT detection, respectively. The diagnostic sensitivity of the assay was approximately 99%, and specificity was 100%. It has been found that strains of C. ulcerans, on average, produce 10 times less DT than C. diphtheriae. The mAbs used in the ELISA proved to be quite discriminatory and could be further used for the design of the LFIA, a method that can reduce the labor and cost of laboratory diagnosis of diphtheria.

13.
Pathogens ; 11(9)2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36145495

RESUMO

In a previous work, we demonstrated that nasally administered Corynebacterium pseudodiphtheriticum 090104 beneficially modulated the respiratory innate immune response and improved the protection against Respiratory Syncytial Virus and Streptococcus pneumoniae in mice. In this work, we aimed to evaluate whether the immunomodulatory 090104 strain was able to enhance the resistance against the respiratory infection induced by hypermucoviscous carbapenemase-producing (KPC-2) Klebsiella pneumoniae strains belonging to the sequence type (ST) 25. The nasal treatment of mice with C. pseudodiphtheriticum 090104 before the challenge with multiresistant K. pneumoniae ST25 strains significantly reduced lung bacterial cell counts and lung tissue damage. The protective effect of the 090104 strain was related to its ability to regulate the respiratory innate immune response triggered by K. pneumoniae challenge. C. pseudifteriticum 090104 differentially modulated the recruitment of leukocytes into the lung and the production of TNF-α, IFN-γ and IL-10 levels in the respiratory tract and serum. Our results make an advance in the positioning of C. pseudodiphtheriticum 090104 as a next-generation probiotic for the respiratory tract and encourage further research of this bacterium as a promising alternative to develop non-antibiotic therapeutical approaches to enhance the prevention of infections produced by microorganisms with multiple resistance to antimicrobials such as KPC-2-producing hypermucoviscous K. pneumoniae strains belonging to ST25.

14.
Antibiotics (Basel) ; 11(10)2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36290095

RESUMO

Limosilactobacillus fermentum strain 3872 (LF3872) was originally isolated from the breast milk of a healthy woman during lactation and the breastfeeding of a child. The high-quality genome sequencing of LF3872 was performed, and a gene encoding a unique bacteriocin was discovered. It was established that the bacteriocin produced by LF3872 (BLF3872) belongs to the family of cell-wall-degrading proteins that cause cell lysis. The antibacterial properties of LF3872 were studied using test cultures of antibiotic-resistant Gram-positive and Gram-negative pathogens. Gram-positive pathogens (Staphylococcus aureus strain 8325-4 and S. aureus strain IIE CI-SA 1246) were highly sensitive to the bacteriolytic action of LF3872. Gram-negative pathogens (Escherichia coli, Salmonella strains, and Campylobacter jejuni strains) were more resistant to the bacteriolytic action of LF3872 compared to Gram-positive pathogens. LF3872 is a strong co-aggregator of Gram-negative pathogens. The cell-free culture supernatant of LF3872 (CSLF3872) induced cell damage in the Gram-positive and Gram-negative test cultures and ATP leakage. In the in vitro experiments, it was found that LF3872 and Actigen prebiotic (Alltech Inc., Nicholasville, KY, USA) exhibited synergistic anti-adhesive activity against Gram-negative pathogens. LF3872 has immunoregulatory properties: it inhibited the lipopolysaccharide-induced production of proinflammatory cytokines IL-8, IL-1ß, and TNF-α in a monolayer of Caco-2 cells; inhibited the production of IL-12 and stimulated the production of IL-10 in immature human dendritic cells; and stimulated the production of TGF-ß, IFN-γ, and IgA in the immunocompetent cells of intestinal Peyer's patches (PPs) in mice. These results indicate the possibility of creating a synbiotic based on LF3872 and a prebiotic derived from Saccharomyces cerevisiae cell wall components. Such innovative drugs and biologically active additives are necessary for the implementation of a strategy to reduce the spread of antibiotic-resistant strains of socially significant animal and human infections.

15.
Pathogens ; 10(6)2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34064210

RESUMO

In a previous work, we demonstrated that nasally administered Dolosigranulum pigrum 040417 beneficially modulated the respiratory innate immune response triggered by the activation of Toll-like receptor 3 (TLR3) and improved protection against Respiratory Syncytial Virus (RSV) in mice. In this work, we aimed to evaluate the immunomodulatory effects of D. pigrum 040417 in human respiratory epithelial cells and the potential ability of this immunobiotic bacterium to increase the protection against Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). The respiratory commensal bacterium D. pigrum 040417 differentially modulated the production of IFN-ß, IL-6, CXCL8, CCL5 and CXCL10 in the culture supernatants of Calu-3 cells stimulated with poly(I:C) or challenged with SARS-CoV-2. The differential cytokine profile induced by the 040417 strain was associated with a significant reduction in viral replication and cellular damage after coronavirus infection. Of note, D. pigrum 030918 was not able to modify the resistance of Calu-3 cells to SARS-CoV-2 infection, indicating a strain-specific immunomodulatory effect for respiratory commensal bacteria. The findings of this work improve our understanding of the immunological mechanisms involved in the modulation of respiratory immunity induced by respiratory commensal bacteria, by demonstrating their specific effect on respiratory epithelial cells. In addition, the results suggest that particular strains such as D. pigrum 040417 could be used as a promising alternative for combating SARS-CoV-2 and reducing the severity of COVID-19.

16.
Microorganisms ; 9(6)2021 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-34207076

RESUMO

Previously, we demonstrated that the nasal administration of Dolosigranulum pigrum 040417 differentially modulated the respiratory innate immune response triggered by the activation of Toll-like receptor 2 in infant mice. In this work, we aimed to evaluate the beneficial effects of D. pigrum 040417 in the context of Streptococcus pneumoniae infection and characterize the role of alveolar macrophages (AMs) in the immunomodulatory properties of this respiratory commensal bacterium. The nasal administration of D. pigrum 040417 to infant mice significantly increased their resistance to pneumococcal infection, differentially modulated respiratory cytokines production, and reduced lung injuries. These effects were associated to the ability of the 040417 strain to modulate AMs function. Depletion of AMs significantly reduced the capacity of the 040417 strain to improve both the reduction of pathogen loads and the protection against lung tissue damage. We also demonstrated that the immunomodulatory properties of D. pigrum are strain-specific, as D. pigrum 030918 was not able to modulate respiratory immunity or to increase the resistance of mice to an S. pneumoniae infection. These findings enhanced our knowledge regarding the immunological mechanisms involved in modulation of respiratory immunity induced by beneficial respiratory commensal bacteria and suggested that particular strains could be used as next-generation probiotics.

17.
Nat Commun ; 12(1): 1500, 2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33686077

RESUMO

Diphtheria is a respiratory disease caused by the bacterium Corynebacterium diphtheriae. Although the development of a toxin-based vaccine in the 1930s has allowed a high level of control over the disease, cases have increased in recent years. Here, we describe the genomic variation of 502 C. diphtheriae isolates across 16 countries and territories over 122 years. We generate a core gene phylogeny and determine the presence of antimicrobial resistance genes and variation within the tox gene of 291 tox+ isolates. Numerous, highly diverse clusters of C. diphtheriae are observed across the phylogeny, each containing isolates from multiple countries, regions and time of isolation. The number of antimicrobial resistance genes, as well as the breadth of antibiotic resistance, is substantially greater in the last decade than ever before. We identified and analysed 18 tox gene variants, with mutations estimated to be of medium to high structural impact.


Assuntos
Corynebacterium diphtheriae/genética , Toxina Diftérica/genética , Difteria/microbiologia , Difteria/prevenção & controle , Anti-Infecciosos/farmacologia , Corynebacterium diphtheriae/efeitos dos fármacos , Toxoide Diftérico , Farmacorresistência Bacteriana/genética , Variação Genética , Genoma Bacteriano , Genômica , Humanos , Índia , Testes de Sensibilidade Microbiana , Filogenia , Polimorfismo de Nucleotídeo Único
18.
Int J Biol Macromol ; 189: 410-419, 2021 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-34437917

RESUMO

We have previously demonstrated the ability of the human vaginal strain Lactobacillus crispatus 2029 (LC2029) for strong adhesion to cervicovaginal epithelial cells, expression of the surface layer protein 2 (Slp2), and antagonistic activity against urogenital pathogens. Slp2 forms regular two-dimensional structure around the LC2029 cells,which is secreted into the medium and inhibits intestinal pathogen-induced activation of caspase-9 and caspase-3 in the human intestinal Caco-2 cells. Here, we elucidated the effects of soluble Slp2 on adhesion of proteobacteria pathogens inducing necrotizing enterocolitis (NEC), such as Escherichia coli ATCC E 2348/69, E. coli ATCC 31705, Salmonella Enteritidis ATCC 13076, Campylobacter jejuni ATCC 29428, and Pseudomonas aeruginosa ATCC 27853 to Caco-2 cells, as well as on growth promotion, differentiation, vascular endothelial growth factor (VEGF) production, and intestinal barrier function of Caco-2 cell monolayers. Slp2 acts as anti-adhesion agent for NEC-inducing proteobacteria, promotes growth of immature Caco-2 cells and their differentiation, and enhances expression and functional activity of sucrase, lactase, and alkaline phosphatase. Slp2 stimulates VEGF production, decreases paracellular permeability, and increases transepithelial electrical resistance, strengthening barrier function of Caco-2 cell monolayers. These data support the important role of Slp2 in the early postnatal development of the human small intestine enterocytes.


Assuntos
Diferenciação Celular , Enterócitos/metabolismo , Lactobacillus crispatus/química , Glicoproteínas de Membrana/farmacologia , Vagina/microbiologia , Fator A de Crescimento do Endotélio Vascular/biossíntese , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Aderência Bacteriana/efeitos dos fármacos , Células CACO-2 , Diferenciação Celular/efeitos dos fármacos , Permeabilidade da Membrana Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Impedância Elétrica , Enterócitos/efeitos dos fármacos , Feminino , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Humanos , Lactase/genética , Lactase/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sacarase/genética , Sacarase/metabolismo
19.
Probiotics Antimicrob Proteins ; 12(4): 1439-1450, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32462507

RESUMO

Several species of eukaryotic organisms living in the high mountain areas of Armenia with naturally occurring levels of radiation have high adaptive responses to radiation. We speculate on the role of the gastrointestinal microbiota in this protection against radiation. Therefore, seventeen microorganisms with high antagonistic activities against several multi-drug-resistant pathogens were isolated from the human and animal gut microbiota, as well as from traditional Armenian fermented products. These strains were tested in vivo on Wistar rats to determine their ability to protect the eukaryotic host against radiation damages. The efficiency of the probiotics' application and the dependence on pre- and post-radiation nutrition of rats were described. The effects of Lactobacillus rhamnosus Vahe, isolated from a healthy breastfed infant, and Lactobacillus delbrueckii IAHAHI, isolated from the fermented dairy product matsuni, on the survival of irradiated rats, and their blood leucocyte and glucose levels, were considered to be the most promising, based on this study's results.


Assuntos
Microbioma Gastrointestinal/fisiologia , Lacticaseibacillus rhamnosus/metabolismo , Lactobacillus delbrueckii/metabolismo , Probióticos/farmacologia , Lesões por Radiação/prevenção & controle , Tolerância a Radiação/efeitos dos fármacos , Animais , Biotina/biossíntese , Produtos Fermentados do Leite , Ácido Fólico/biossíntese , Humanos , Lactobacillus delbrueckii/crescimento & desenvolvimento , Lacticaseibacillus rhamnosus/crescimento & desenvolvimento , Contagem de Leucócitos , Masculino , Estado Nutricional/fisiologia , Estado Nutricional/efeitos da radiação , Doses de Radiação , Lesões por Radiação/metabolismo , Lesões por Radiação/microbiologia , Lesões por Radiação/mortalidade , Tolerância a Radiação/fisiologia , Radiometria , Ratos , Ratos Wistar , Riboflavina/biossíntese , Análise de Sobrevida , Vitamina B 6/biossíntese , Irradiação Corporal Total , Raios X
20.
Microorganisms ; 8(5)2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32414154

RESUMO

We investigated whether the ability of commensal respiratory bacteria to modulate the innate immune response against bacterial and viral pathogens was a shared or strain-specific characteristic. Bacterial strains belonging to the Corynebacterium pseudodiphtheriticum and Dolosigranulum pigrum species were compared by studying their influence in the Toll-like receptor (TLR)-2- and TLR3-triggered immune responses in the respiratory tract, as well as in the resistance to Respiratory Syncytial Virus (RSV) and Streptococcus pneumoniae infections. We demonstrated that nasally administered C. pseudodiphteriticum 090104 or D. pigrum 040417 were able to modulate respiratory immunity and increase the resistance against pathogens, while other strains of the same species did not influence the respiratory immune responses, demonstrating a clear strain-dependent immunomodulatory effect of respiratory commensal bacteria. We also reported here that bacterium-like particles (BLP) and cell walls derived from immunomodulatory respiratory commensal bacteria are an interesting alternative for the modulation of the respiratory immune system. Our study is a step forward in the positioning of certain strains of respiratory commensal bacteria as next-generation probiotics for the respiratory tract.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA