Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Allergy Clin Immunol ; 153(5): 1306-1318, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38181841

RESUMO

BACKGROUND: Airway obstruction caused by viscous mucus is an important pathophysiologic characteristic of persistent inflammation, which can result in organ damage. OBJECTIVE: We investigated the hypothesis that the biophysical characteristics of accumulating granulocytes affect the clinical properties of mucus. METHODS: Surgically acquired nasal mucus samples from patients with eosinophilic chronic rhinosinusitis and neutrophil-dominant, noneosinophilic chronic rhinosinusitis were evaluated in terms of computed tomography density, viscosity, water content, wettability, and protein composition. Isolated human eosinophils and neutrophils were stimulated to induce the formation of extracellular traps, followed by the formation of aggregates. The biophysical properties of the aggregated cells were also examined. RESULTS: Mucus from patients with eosinophilic chronic rhinosinusitis had significantly higher computed tomography density, viscosity, dry weight, and hydrophobicity compared to mucus from patients with noneosinophilic chronic rhinosinusitis. The levels of eosinophil-specific proteins in mucus correlated with its physical properties. Eosinophil and neutrophil aggregates showed physical and pathologic characteristics resembling those of mucus. Cotreatment with deoxyribonuclease and heparin, which slenderizes the structure of eosinophil extracellular traps, efficiently induced reductions in the viscosity and hydrophobicity of both eosinophil aggregates and eosinophilic mucus. CONCLUSIONS: The present study elucidated the pathogenesis of mucus stasis in infiltrated granulocyte aggregates from a novel perspective. These findings may contribute to the development of treatment strategies for eosinophilic airway diseases.


Assuntos
Eosinófilos , Armadilhas Extracelulares , Muco , Neutrófilos , Rinite , Sinusite , Humanos , Sinusite/imunologia , Sinusite/patologia , Rinite/imunologia , Rinite/patologia , Eosinófilos/imunologia , Doença Crônica , Neutrófilos/imunologia , Muco/metabolismo , Masculino , Feminino , Adulto , Armadilhas Extracelulares/imunologia , Armadilhas Extracelulares/metabolismo , Pessoa de Meia-Idade , Viscosidade , Agregação Celular , Idoso , Mucosa Nasal/imunologia , Mucosa Nasal/patologia , Rinossinusite
2.
Exp Cell Res ; 414(2): 113086, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35283101

RESUMO

In 2015, Brazil reported an outbreak identified as Zika virus (ZIKV) infection associated with congenital abnormalities. To date, a total of 86 countries and territories have described evidence of Zika infection and recently the appearance of the African ZIKV lineage in Brazil highlights the risk of a new epidemic. The spectrum of ZIKV infection-induced alterations at both cellular and molecular levels is not completely elucidated. Here, we present for the first time the gene expression responses associated with prenatal ZIKV infection from ocular cells. We applied a recently developed non-invasive method (impression cytology) which use eye cells as a model for ZIKV studies. The ocular profiling revealed significant differences between exposed and control groups, as well as a different pattern in ocular transcripts from Congenital Zika Syndrome (CZS) compared to ZIKV-exposed but asymptomatic infants. Our data showed pathways related to mismatch repair, cancer, and PI3K/AKT/mTOR signaling and genes probably causative or protective in the modulation of ZIKV infection. Ocular cells revealed the effects of ZIKV infection on primordial neuronal cell genes, evidenced by changes in genes associated with embryonic cells. The changes in gene expression support an association with the gestational period of the infection and provide evidence for the resulting clinical and ophthalmological pathologies. Additionally, the findings of cell death- and cancer-associated deregulated genes raise concerns about the early onset of other potential pathologies including the need for tumor surveillance. Our results thus provide direct evidence that infants exposed prenatally to the Zika virus, not only with CZS but also without clinical signs (asymptomatic) express cellular and molecular changes with potential clinical implications.


Assuntos
Complicações Infecciosas na Gravidez , Infecção por Zika virus , Zika virus , Olho/patologia , Feminino , Humanos , Lactente , Fosfatidilinositol 3-Quinases , Gravidez , Complicações Infecciosas na Gravidez/diagnóstico , Complicações Infecciosas na Gravidez/epidemiologia , Complicações Infecciosas na Gravidez/genética , Zika virus/genética , Infecção por Zika virus/diagnóstico , Infecção por Zika virus/epidemiologia , Infecção por Zika virus/genética
3.
Environ Microbiol ; 24(12): 5882-5897, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36054062

RESUMO

The ability of freshwater bacteria to secrete extracellular vesicles (EVs) upon interaction with viruses remains to be established. Here, we investigated for the first time if freshwater virus-infected bacteria release EVs in both natural ecosystems and virus-like particles (VLPs)-enriched cultures. We performed a systematic study using transmission electron microscopy to visualize viruses and EVs at high resolution and single-cell imaging analyses to quantitate nascent EVs at the surface of gram-negative bacteria. First, by analysing freshwater samples from a tropical ecosystem (Negro River/Amazon Basin/Brazil), we captured bacteriophages-infected bacteria releasing EVs from their outer membrane. Next, VLPs isolated from these samples and inoculated in bacterial cultures not only impacted bacteria growth and viability but also led them to a significant release of EVs (~300% increase in numbers/cell section) compared to controls. The numbers of both budding and free EVs and EVs per linear micrometre of cell envelope were significantly higher in infected bacteria. Our findings identify a yet-not recognized capability of freshwater bacteria in generating EVs (overvesiculation) in response to viral infection. Since viruses are abundant members of aquatic ecosystems and bacteria are natural hosts for them, such interaction is an interesting event for microbial communities to be explored in freshwater ecosystems.


Assuntos
Bacteriófagos , Vesículas Extracelulares , Ecossistema , Água Doce/microbiologia , Bactérias
4.
Parasitol Res ; 121(5): 1389-1406, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35169883

RESUMO

Visceral leishmaniasis (VL) is the most severe clinical form of leishmaniasis, being fatal if untreated. In search of a more effective treatment for VL, one of the main strategies is the development and screening of new antileishmanial compounds. Here, we reported the synthesis of seven new acetyl functionalized 1,2,3-triazolium salts, together with four 1,2,3-triazole precursors, and investigated their effect against different strains of L. infantum from dogs and humans. The 1,2,3-triazolium salts exhibited better activity than the 1,2,3-triazole derivatives with IC50 range from 0.12 to 8.66 µM and, among them, compound 5 showed significant activity against promastigotes (IC50 from 4.55 to 5.28 µM) and intracellular amastigotes (IC50 from 5.36 to 7.92 µM), with the best selective index (SI ~ 6-9) and reduced toxicity. Our findings, using biochemical and ultrastructural approaches, demonstrated that compound 5 targets the mitochondrion of L. infantum promastigotes, leading to the formation of reactive oxygen species (ROS), increase of the mitochondrial membrane potential, and mitochondrial alteration. Moreover, quantitative transmission electron microscopy (TEM) revealed that compound 5 induces the reduction of promastigote size and cytoplasmic vacuolization. Interestingly, the effect of compound 5 was not associated with apoptosis or necrosis of the parasites but, instead, seems to be mediated through a pathway involving autophagy, with a clear detection of autophagic vacuoles in the cytoplasm by using both a fluorescent marker and TEM. As for the in vivo studies, compound 5 showed activity in a mouse model of VL at 20 mg/kg, reducing the parasite load in both spleen and liver (59.80% and 26.88%, respectively). Finally, this compound did not induce hepatoxicity or nephrotoxicity and was able to normalize the altered biochemical parameters in the infected mice. Thus, our findings support the use of 1,2,3-triazolium salts as potential agents against visceral leishmaniasis.


Assuntos
Antiprotozoários , Leishmania infantum , Leishmaniose Visceral , Animais , Antiprotozoários/uso terapêutico , Cães , Leishmaniose Visceral/tratamento farmacológico , Leishmaniose Visceral/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Sais/farmacologia , Sais/uso terapêutico , Triazóis/farmacologia , Triazóis/uso terapêutico
5.
Blood ; 133(22): 2413-2426, 2019 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-30917956

RESUMO

Eosinophils and neutrophils are critical for host defense, yet gaps in understanding how granulocytes differentiate from hematopoietic stem cells (HSCs) into mature effectors remain. The pseudokinase tribbles homolog 1 (Trib1) is an important regulator of granulocytes; knockout mice lack eosinophils and have increased neutrophils. However, how Trib1 regulates cellular identity and function during eosinophilopoiesis is not understood. Trib1 expression markedly increases with eosinophil-lineage commitment in eosinophil progenitors (EoPs), downstream of the granulocyte/macrophage progenitor (GMP). Using hematopoietic- and eosinophil-lineage-specific Trib1 deletion, we found that Trib1 regulates both granulocyte precursor lineage commitment and mature eosinophil identity. Conditional Trib1 deletion in HSCs reduced the size of the EoP pool and increased neutrophils, whereas deletion following eosinophil lineage commitment blunted the decrease in EoPs without increasing neutrophils. In both modes of deletion, Trib1-deficient mice expanded a stable population of Ly6G+ eosinophils with neutrophilic characteristics and functions, and had increased CCAAT/enhancer binding protein α (C/EBPα) p42. Using an ex vivo differentiation assay, we found that interleukin 5 (IL-5) supports the generation of Ly6G+ eosinophils from Trib1-deficient cells, but is not sufficient to restore normal eosinophil differentiation and development. Furthermore, we demonstrated that Trib1 loss blunted eosinophil migration and altered chemokine receptor expression, both in vivo and ex vivo. Finally, we showed that Trib1 controls eosinophil identity by modulating C/EBPα. Together, our findings provide new insights into early events in myelopoiesis, whereby Trib1 functions at 2 distinct stages to guide eosinophil lineage commitment from the GMP and suppress the neutrophil program, promoting eosinophil terminal identity and maintaining lineage fidelity.


Assuntos
Eosinófilos/metabolismo , Regulação da Expressão Gênica , Células Progenitoras de Granulócitos e Macrófagos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/biossíntese , Mielopoese , Neutrófilos/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Animais , Eosinófilos/citologia , Células Progenitoras de Granulócitos e Macrófagos/citologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Camundongos Transgênicos , Neutrófilos/citologia , Proteínas Serina-Treonina Quinases/biossíntese , Proteínas Serina-Treonina Quinases/genética
6.
Cell Microbiol ; 22(7): e13195, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32083807

RESUMO

Neutrophils are leukocytes that are capable of eliminating both intra- and extracellular pathogens by mechanisms such as phagocytosis, degranulation, and release of neutrophil extracellular traps (NETs). Histoplasma capsulatum var. capsulatum (H. capsulatum) is a dimorphic fungus with a global distribution that causes histoplasmosis, a disease that is endemic in different geographic areas and is spreading worldwide. The release of NETs has been described as an important host defense mechanism against different fungi; however, there are no reports demonstrating that this process is implicated in neutrophil response to H. capsulatum infection. Therefore, the aim of this work is to investigate whether isolated human neutrophils release NETs in response to H. capsulatum and the potential mechanisms involved, as well as delineate the NETs antifungal activity. Using both confocal fluorescence and scanning electron microscopy techniques, we determined that NETs are released in vitro in response to H. capsulatum via an oxidative mechanism that is downstream of activation of the Syk and Src kinase pathways and is also dependent on CD18. NETs released in response to H. capsulatum yeasts involve the loss of neutrophil viability and are associated with elastase and citrullinated histones, however also can occur in a PAD4 histone citrullination independent pathway. This NETs also presented fungicidal activity against H. capsulatum yeasts. Our findings may contribute to the understanding of how neutrophils recognize and respond as immune effector cells to H. capsulatum, which may lead to better knowledge of histoplasmosis pathophysiology and treatment.


Assuntos
Armadilhas Extracelulares/imunologia , Histonas/metabolismo , Histoplasma/imunologia , Histoplasmose/imunologia , Neutrófilos/imunologia , Humanos , Fagocitose , Proteína-Arginina Desiminase do Tipo 4/metabolismo
7.
Med Mycol ; 59(12): 1210-1224, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34468763

RESUMO

Spilanthol is a bioactive alkylamide from the native Amazon plant species, Acmella oleracea. However, antifungal activities of spilanthol and its application to the therapeutic treatment of candidiasis remain to be explored. This study sought to evaluate the in vitro and in vivo antifungal activity of spilanthol previously isolated from A. oleracea (spilanthol(AcO)) against Candida albicans ATCC® 10231™, a multidrug-resistant fungal strain. Microdilution methods were used to determine inhibitory and fungicidal concentrations of spilanthol(AcO). In planktonic cultures, the fungal growth kinetics, yeast cell metabolic activity, cell membrane permeability and cell wall integrity were investigated. The effect of spilanthol(AcO) on the proliferation and adhesion of fungal biofilms was evaluated by whole slide imaging and scanning electron microscopy. The biochemical composition of the biofilm matrix was also analyzed. In parallel, spilanthol(AcO) was tested in vivo in an experimental vulvovaginal candidiasis model. Our in vitro analyses in C. albicans planktonic cultures detected a significant inhibitory effect of spilanthol(AcO), which affects both yeast cell membrane and cell wall integrity, interfering with the fungus growth. C. albicans biofilm proliferation and adhesion, as well as, carbohydrates and DNA in biofilm matrix were reduced after spilanthol(AcO) treatment. Moreover, infected rats treated with spilanthol(AcO) showed consistent reduction of both fungal burden and inflammatory processes compared to the untreated animals. Altogether, our findings demonstrated that spilanthol(AcO) is an bioactive compound against planktonic and biofilm forms of a multidrug resistant C. albicans strain. Furthermore, spilanthol(AcO) can be potentially considered for therapeutical treatment of vulvovaginal candidiasis caused by C. albicans. LAY SUMMARY: This study sought to evaluate the antifungal activity of spilanthol against Candida albicans ATCC® 10 231™, a multidrug-resistant fungal strain. Our findings demonstrated that spilanthol(AcO) can be potentially considered for therapeutical treatment of vulvovaginal candidiasis caused by C. albicans.


Assuntos
Candidíase Vulvovaginal , Doenças dos Roedores , Animais , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Biofilmes , Candida albicans , Candidíase Vulvovaginal/tratamento farmacológico , Candidíase Vulvovaginal/veterinária , Testes de Sensibilidade Microbiana/veterinária , Alcamidas Poli-Insaturadas/farmacologia , Ratos , Doenças dos Roedores/tratamento farmacológico
8.
J Proteome Res ; 19(11): 4496-4515, 2020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-32686424

RESUMO

Congenital Zika syndrome was first described due to increased incidence of congenital abnormalities associated with Zika virus (ZIKV) infection. Since the eye develops as part of the embryo central nervous system (CNS) structure, it becomes a specialized compartment able to display symptoms of neurodegenerative diseases and has been proposed as a noninvasive approach to the early diagnosis of neurological diseases. Ocular lesions result from defects that occurred during embryogenesis and can become apparent in newborns exposed to ZIKV. Furthermore, the absence of microcephaly cannot exclude the occurrence of ocular lesions and other CNS manifestations. Considering the need for surveillance of newborns and infants with possible congenital exposure, we developed a method termed cellular imprinting proteomic assay (CImPA) to evaluate the ocular surface proteome specific to infants exposed to ZIKV during gestation compared to nonexposure. CImPA combines surface cells and fluid capture using membrane disks and a large-scale quantitative proteomics approach, which allowed the first-time report of molecular alterations such as neutrophil degranulation, cell death signaling, ocular and neurological pathways, which are associated with ZIKV infection with and without the development of congenital Zika syndrome, CZS. Particularly, infants exposed to ZIKV during gestation and without early clinical symptoms could be detected using the CImPA method. Lastly, this methodology has broad applicability as it could be translated in the study of several neurological diseases to identify novel diagnostic biomarkers. Data are available via ProteomeXchange with identifier PXD014038.


Assuntos
Microcefalia , Complicações Infecciosas na Gravidez , Infecção por Zika virus , Zika virus , Feminino , Humanos , Lactente , Recém-Nascido , Gravidez , Proteômica , Infecção por Zika virus/diagnóstico
9.
Blood ; 132(20): 2183-2187, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30154112

RESUMO

Protein crystallization in human tissue rarely occurs. Charcot-Leyden crystals (CLCs) were described in various eosinophilic diseases >150 years ago, but our understanding of CLC formation still remains limited. In this study, we demonstrate that CLCs observed in varied inflamed human tissues are closely associated with eosinophil cell-free granules and nuclear envelope/plasma membrane disintegration with release of filamentous chromatin (extracellular traps), typical morphologies of a regulated pathway of extracellular trap cell death (ETosis). During the process of eosinophil ETosis, eccentrically localized cytoplasmic and perinuclear CLC protein (galectin-10) is homogeneously redistributed in the cytoplasm. Rapid (1-2 minutes) formation of intracytoplasmic CLCs was observed using time-lapse imaging. Plasma membrane rupture enabled the release of both intracellularly formed CLCs and soluble galectin-10 that further contributed to formation of CLCs extracellularly, in parallel with the expulsion of free intact granules and extracellular traps. CLC formation and galectin-10 release were dependent on nicotinamide adenine dinucleotide phosphate oxidase activation. To our knowledge, this is the first demonstration of natural formation of CLCs in association with an active physiological process (ie, ETosis). These results indicate that dynamic changes in intracellular localization and release of galectin-10 contribute to CLC formation in vivo and suggest that CLC/galectin-10 might serve as an indicator of ETosis.


Assuntos
Morte Celular , Eosinófilos/patologia , Armadilhas Extracelulares/imunologia , Galectinas/análise , Inflamação/patologia , Membrana Celular/imunologia , Membrana Celular/patologia , Cristalização , Eosinófilos/citologia , Eosinófilos/imunologia , Galectinas/imunologia , Humanos , Inflamação/imunologia
10.
J Immunol ; 198(8): 3214-3226, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28283567

RESUMO

Eosinophils are multifunctional cells of the innate immune system linked to allergic inflammation. Asthmatics were more likely to be hospitalized but less likely to suffer severe morbidity and mortality during the 2009 influenza pandemic. These epidemiologic findings were recapitulated in a mouse model of fungal asthma wherein infection during heightened allergic inflammation was protective against influenza A virus (IAV) infection and disease. Our goal was to delineate a mechanism(s) by which allergic asthma may alleviate influenza disease outcome, focused on the hypothesis that pulmonary eosinophilia linked with allergic respiratory disease is able to promote antiviral host defenses against the influenza virus. The transfer of eosinophils from the lungs of allergen-sensitized and challenged mice into influenza virus-infected mice resulted in reduced morbidity and viral burden, improved lung compliance, and increased CD8+ T cell numbers in the airways. In vitro assays with primary or bone marrow-derived eosinophils were used to determine eosinophil responses to the virus using the laboratory strain (A/PR/08/1934) or the pandemic strain (A/CA/04/2009) of IAV. Eosinophils were susceptible to IAV infection and responded by activation, piecemeal degranulation, and upregulation of Ag presentation markers. Virus- or viral peptide-exposed eosinophils induced CD8+ T cell proliferation, activation, and effector functions. Our data suggest that eosinophils promote host cellular immunity to reduce influenza virus replication in lungs, thereby providing a novel mechanism by which hosts with allergic asthma may be protected from influenza morbidity.


Assuntos
Asma/imunologia , Eosinófilos/imunologia , Vírus da Influenza A/imunologia , Infecções por Orthomyxoviridae/imunologia , Animais , Asma/complicações , Linfócitos T CD8-Positivos/imunologia , Modelos Animais de Doenças , Citometria de Fluxo , Hipersensibilidade/complicações , Hipersensibilidade/imunologia , Ativação Linfocitária/imunologia , Camundongos , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Infecções por Orthomyxoviridae/complicações , Eosinofilia Pulmonar/imunologia
11.
J Allergy Clin Immunol ; 141(2): 571-585.e7, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28943470

RESUMO

BACKGROUND: Eosinophils mediate the immune response in different infectious conditions. The release of extracellular DNA traps (ETs) by leukocytes has been described as an innate immune response mechanism that is relevant in many disorders including fungal diseases. Different stimuli induce the release of human eosinophil ETs (EETs). Aspergillus fumigatus is an opportunistic fungus that may cause eosinophilic allergic bronchopulmonary aspergillosis (ABPA). It has been reported that eosinophils are important to the clearance of A fumigatus in infected mice lungs. However, the immunological mechanisms that underlie the molecular interactions between A fumigatus and eosinophils are poorly understood. OBJECTIVE: Here, we investigated the presence of EETs in the bronchial mucus plugs of patients with ABPA. We also determined whether A fumigatus induced the release of human eosinophil EETs in vitro. METHODS: Mucus samples of patients with ABPA were analyzed by light and confocal fluorescence microscopy. The release of EETs by human blood eosinophils was evaluated using different pharmacological tools and neutralizing antibodies by fluorescence microscopy and a fluorimetric method. RESULTS: We identified abundant nuclear histone-bearing EETs in the bronchial secretions obtained from patients with ABPA. In vitro, we demonstrated that A fumigatus induces the release of EETs through a mechanism independent of reactive oxygen species but associated with eosinophil death, histone citrullination, CD11b, and the Syk tyrosine kinase pathway. EETs lack the killing or fungistatic activities against A fumigatus. CONCLUSIONS: Our findings may contribute to the understanding of how eosinophils recognize and act as immune cells in response to A fumigatus, which may lead to novel insights regarding the treatment of patients with ABPA.


Assuntos
Aspergilose Broncopulmonar Alérgica/imunologia , Aspergillus fumigatus/imunologia , Eosinófilos/imunologia , Armadilhas Extracelulares/imunologia , Aspergilose Broncopulmonar Alérgica/patologia , Antígeno CD11b/imunologia , Citrulinação/imunologia , Eosinófilos/patologia , Histonas/imunologia , Humanos , Espécies Reativas de Oxigênio/imunologia , Quinase Syk/imunologia
12.
Cell Microbiol ; 19(1)2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27794207

RESUMO

Lipid droplets were long considered to be simple storage structures, but they have recently been shown to be dynamic organelles involved in diverse biological processes, including emerging roles in innate immunity. Various intracellular pathogens, including viruses, bacteria, and parasites, specifically target host lipid droplets during their life cycle. Viruses such as hepatitis C, dengue, and rotaviruses use lipid droplets as platforms for assembly. Bacteria, such as mycobacteria and Chlamydia, and parasites, such as trypanosomes, use host lipid droplets for nutritional purposes. The possible use of lipid droplets by intracellular pathogens, as part of an anti-immunity strategy, is an intriguing question meriting further investigation in the near future.


Assuntos
Bactérias/metabolismo , Gotículas Lipídicas/imunologia , Trypanosoma/metabolismo , Montagem de Vírus , Animais , Humanos , Gotículas Lipídicas/microbiologia , Gotículas Lipídicas/parasitologia , Gotículas Lipídicas/virologia , Metabolismo dos Lipídeos
13.
Exp Cell Res ; 340(2): 193-7, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26515551

RESUMO

Studies on lipid droplets (LDs) in leukocytes have attracted attention due to their association with human diseases. In these cells, LDs are rapidly formed in response to inflammatory stimuli or allergic/inflammatory diseases including infections with parasites and bacteria. Leukocyte LDs are linked to the regulation of immune responses by compartmentalization of several proteins and lipids involved in the control and biosynthesis of inflammatory mediators (eicosanoids). In this mini review, we summarize current knowledge on the composition, structure and function of leukocyte LDs, organelles now considered as structural markers of inflammation.


Assuntos
Inflamação/metabolismo , Leucócitos/imunologia , Gotículas Lipídicas/metabolismo , Metabolismo dos Lipídeos/fisiologia , Lipídeos , Animais , Humanos , Imunidade/imunologia
14.
Exp Cell Res ; 347(2): 385-90, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27562864

RESUMO

Electron microscopy (EM)-based techniques are mostly responsible for our current view of cell morphology at the subcellular level and continue to play an essential role in biological research. In cells from the immune system, such as eosinophils, EM has helped to understand how cells package and release mediators involved in immune responses. Ultrastructural investigations of human eosinophils enabled visualization of secretory processes in detail and identification of a robust, vesicular trafficking essential for the secretion of immune mediators via a non-classical secretory pathway associated with secretory (specific) granules. This vesicular system is mainly organized as large tubular-vesicular carriers (Eosinophil Sombrero Vesicles - EoSVs) actively formed in response to cell activation and provides a sophisticated structural mechanism for delivery of granule-stored mediators. In this review, we highlight the application of EM techniques to recognize pools of immune mediators at vesicular compartments and to understand the complex secretory pathway within human eosinophils involved in inflammatory and allergic responses.


Assuntos
Eosinófilos/metabolismo , Eosinófilos/ultraestrutura , Sistema Imunitário/metabolismo , Microscopia Imunoeletrônica/métodos , Vesículas Secretórias/metabolismo , Transporte Biológico , Humanos , Vesículas Secretórias/ultraestrutura
15.
An Acad Bras Cienc ; 89(3 Suppl): 2053-2073, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28813096

RESUMO

This study aimed to further investigate the cytotoxicity against tumor cell lines and several bacterial strains of Annona squamosa and its mode of action. Methanol extracts of A. squamosa leaves (ASL) and seeds (ASS) were used. ASL showed significant antibacterial activity against S. aureus, K. pneumoniae and E. faecalis with MIC values of 78, 78 and 39 µg/mL respectively. Moreover, ASL exhibited significant biofilm disruption, rapid time dependent kinetics of bacterial killing, increased membrane permeability and significantly reduced the cell numbers and viability. Regarding the cytotoxicity against tumor cell lines, ASS was more active against Jurkat and MCF-7 cells, with CI50 1.1 and 2.1 µg/mL, respectively. ASL showed promising activity against Jurkat and HL60, with CI50 4.2 and 6.4 µg/mL, respectively. Both extracts showed lower activity against VERO cells and reduced the clonogenic survival at higher concentrations (IC90) to MCF-7 and HCT-116 lineages. The alkaloids anonaine, asimilobine, corypalmine, liriodenine nornuciferine and reticuline were identified in extracts by UPLC-ESI-MS/MS analysis. This study reinforced that A. squamosa presents a remarkable phytomedicinal potential and revealed that its antimicrobial mechanism of action is related to bacterial membrane destabilization.


Assuntos
Annona/química , Antibacterianos/farmacologia , Enterococcus faecalis/efeitos dos fármacos , Klebsiella pneumoniae/efeitos dos fármacos , Extratos Vegetais/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Animais , Linhagem Celular Tumoral/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Chlorocebus aethiops , Humanos , Testes de Sensibilidade Microbiana
16.
Exp Cell Res ; 337(2): 129-135, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26254897

RESUMO

BACKGROUND: SNARE members mediate membrane fusion during intracellular trafficking underlying innate and adaptive immune responses by different cells. However, little is known about the expression and function of these proteins in human eosinophils, cells involved in allergic, inflammatory and immunoregulatory responses. Here, we investigate the expression and distribution of the Qa-SNARE syntaxin17 (STX17) within human eosinophils isolated from the peripheral blood. METHODS: Flow cytometry and a pre-embedding immunonanogold electron microscopy (EM) technique that combines optimal epitope preservation and secondary Fab-fragments of antibodies linked to 1.4 nm gold particles for optimal access to microdomains, were used to investigate STX17. RESULTS: STX17 was detected within unstimulated eosinophils. Immunogold EM revealed STX17 on secretory granules and on granule-derived vesiculotubular transport carriers (Eosinophil Sombrero Vesicles-EoSVs). Quantitative EM analyses showed that 77.7% of the granules were positive for STX17 with a mean±SEM of 3.9±0.2 gold particles/granule. Labeling was present on both granule outer membranes and matrices while EoSVs showed clear membrane-associated labeling. STX17 was also present in secretory granules in eosinophils stimulated with the cytokine tumor necrosis factor alpha (TNF-α) or the CC-chemokine ligand 11 CCL11 (eotaxin-1), stimuli that induce eosinophil degranulation. The number of secretory granules labeled for STX17 was significantly higher in CCL11 compared with the unstimulated group. The level of cell labeling did not change when unstimulated cells were compared with TNF-α-stimulated eosinophils. CONCLUSIONS: The present study clearly shows by immunanonogold EM that STX17 is localized in eosinophil secretory granules and transport vesicles and might be involved in the transport of granule-derived cargos.


Assuntos
Citocinas/metabolismo , Eosinófilos/metabolismo , Proteínas Qa-SNARE/metabolismo , Vesículas Secretórias/metabolismo , Células Cultivadas , Eosinófilos/citologia , Citometria de Fluxo , Humanos , Microscopia Imunoeletrônica , Vesículas Secretórias/ultraestrutura , Frações Subcelulares
17.
Blood ; 121(11): 2074-83, 2013 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-23303825

RESUMO

Eosinophils release their granule proteins extracellularly through exocytosis, piecemeal degranulation, or cytolytic degranulation. Findings in diverse human eosinophilic diseases of intact extracellular eosinophil granules, either free or clustered, indicate that eosinophil cytolysis occurs in vivo, but the mechanisms and consequences of lytic eosinophil degranulation are poorly understood. We demonstrate that activated human eosinophils can undergo extracellular DNA trap cell death (ETosis) that cytolytically releases free eosinophil granules. Eosinophil ETosis (EETosis), in response to immobilized immunoglobulins (IgG, IgA), cytokines with platelet activating factor, calcium ionophore, or phorbol myristate acetate, develops within 120 minutes in a reduced NADP (NADPH) oxidase-dependent manner. Initially, nuclear lobular formation is lost and some granules are released by budding off from the cell as plasma membrane-enveloped clusters. Following nuclear chromatolysis, plasma membrane lysis liberates DNA that forms weblike extracellular DNA nets and releases free intact granules. EETosis-released eosinophil granules, still retaining eosinophil cationic granule proteins, can be activated to secrete when stimulated with CC chemokine ligand 11 (eotaxin-1). Our results indicate that an active NADPH oxidase-dependent mechanism of cytolytic, nonapoptotic eosinophil death initiates nuclear chromatolysis that eventuates in the release of intact secretion-competent granules and the formation of extracellular DNA nets.


Assuntos
Degranulação Celular , DNA/metabolismo , Eosinófilos/metabolismo , Eosinófilos/fisiologia , Vesículas Secretórias/metabolismo , Morte Celular/efeitos dos fármacos , Morte Celular/genética , Morte Celular/fisiologia , Degranulação Celular/efeitos dos fármacos , Degranulação Celular/fisiologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Células Cultivadas , Quimiocina CCL11/farmacologia , Relação Dose-Resposta a Droga , Eosinófilos/efeitos dos fármacos , Exocitose/efeitos dos fármacos , Exocitose/fisiologia , Espaço Extracelular/efeitos dos fármacos , Espaço Extracelular/genética , Espaço Extracelular/metabolismo , Humanos , Vesículas Secretórias/efeitos dos fármacos
18.
Cell Microbiol ; 16(6): 797-815, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24552180

RESUMO

We recently showed that Mycobacterium leprae (ML) is able to induce lipid droplet formation in infected macrophages. We herein confirm that cholesterol (Cho) is one of the host lipid molecules that accumulate in ML-infected macrophages and investigate the effects of ML on cellular Cho metabolism responsible for its accumulation. The expression levels of LDL receptors (LDL-R, CD36, SRA-1, SR-B1, and LRP-1) and enzymes involved in Cho biosynthesis were investigated by qRT-PCR and/or Western blot and shown to be higher in lepromatous leprosy (LL) tissues when compared to borderline tuberculoid (BT) lesions. Moreover, higher levels of the active form of the sterol regulatory element-binding protein (SREBP) transcriptional factors, key regulators of the biosynthesis and uptake of cellular Cho, were found in LL skin biopsies. Functional in vitro assays confirmed the higher capacity of ML-infected macrophages to synthesize Cho and sequester exogenous LDL-Cho. Notably, Cho colocalized to ML-containing phagosomes, and Cho metabolism impairment, through either de novo synthesis inhibition by statins or depletion of exogenous Cho, decreased intracellular bacterial survival. These findings highlight the importance of metabolic integration between the host and bacteria to leprosy pathophysiology, opening new avenues for novel therapeutic strategies to leprosy.


Assuntos
Colesterol/metabolismo , Interações Hospedeiro-Patógeno , Macrófagos/microbiologia , Viabilidade Microbiana , Mycobacterium leprae/fisiologia , Fagossomos/microbiologia , Animais , Western Blotting , Células Cultivadas , Perfilação da Expressão Gênica , Humanos , Hanseníase/tratamento farmacológico , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Fagossomos/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Receptores de LDL/biossíntese , Receptores de LDL/genética , Proteínas de Ligação a Elemento Regulador de Esterol/biossíntese , Proteínas de Ligação a Elemento Regulador de Esterol/genética
19.
PLoS Pathog ; 8(7): e1002729, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22792061

RESUMO

Phagocytosis of invading microorganisms by specialized cells such as macrophages and neutrophils is a key component of the innate immune response. These cells capture and engulf pathogens and subsequently destroy them in intracellular vacuoles-the phagosomes. Pathogen phagocytosis and progression and maturation of pathogen-containing phagosomes, a crucial event to acquire microbicidal features, occurs in parallel with accentuated formation of lipid-rich organelles, termed lipid bodies (LBs), or lipid droplets. Experimental and clinical infections with different pathogens such as bacteria, parasites, and viruses induce LB accumulation in cells from the immune system. Within these cells, LBs synthesize and store inflammatory mediators and are considered structural markers of inflammation. In addition to LB accumulation, interaction of these organelles with pathogen-containing phagosomes has increasingly been recognized in response to infections and may have implications in the outcome or survival of the microorganism within host cells. In this review, we summarize our current knowledge on the LB-phagosome interaction within cells from the immune system, with emphasis on macrophages, and discuss the functional meaning of this event during infectious diseases.


Assuntos
Infecções , Macrófagos , Neutrófilos/imunologia , Fagossomos/imunologia , Animais , Bactérias/imunologia , Humanos , Imunidade Inata , Corpos de Inclusão/imunologia , Infecções/imunologia , Infecções/microbiologia , Infecções/parasitologia , Inflamação/imunologia , Inflamação/microbiologia , Inflamação/parasitologia , Mediadores da Inflamação , Macrófagos/imunologia , Macrófagos/microbiologia , Macrófagos/parasitologia , Camundongos , Fagocitose
20.
Antonie Van Leeuwenhoek ; 105(1): 1-14, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24132727

RESUMO

The understanding of the functional role of aquatic bacteria in microbial food webs is largely dependent on methods applied to the direct visualization and enumeration of these organisms. While the ultrastructure of aquatic bacteria is still poorly known, routine observation of aquatic bacteria by light microscopy requires staining with fluorochromes, followed by filtration and direct counting on filter surfaces. Here, we used a new strategy to visualize and enumerate aquatic bacteria by light microscopy. By spinning water samples from varied tropical ecosystems in a cytocentrifuge, we found that bacteria firmly adhere to regular slides, can be stained by fluorochoromes with no background formation and fast enumerated. Significant correlations were found between the cytocentrifugation and filter-based methods. Moreover, preparations through cytocentrifugation were more adequate for bacterial viability evaluation than filter-based preparations. Transmission electron microscopic analyses revealed a morphological diversity of bacteria with different internal and external structures, such as large variation in the cell envelope and capsule thickness, and presence or not of thylakoid membranes. Our results demonstrate that aquatic bacteria represent an ultrastructurally diverse population and open avenues for easy handling/quantification and better visualization of bacteria by light microscopy without the need of filter membranes.


Assuntos
Bactérias/isolamento & purificação , Bactérias/ultraestrutura , Água Doce/microbiologia , Bactérias/química , Microscopia , Microscopia Eletrônica de Transmissão , Coloração e Rotulagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA