Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Anal Chem ; 96(36): 14315-14319, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39193820

RESUMO

3D printing has changed many industries and research areas, and it is poised to do the same for electrochemistry and electroanalytical sciences. The ability to easily shape electrically conductive parts in complex geometries, something very difficult to do using traditional manufacturing techniques, can now be easily accomplished at home, opening the possibility of fabricating electrodes and electrochemical cells with geometries that were once unimaginable. This ability can be a milestone in electrochemistry, allowing the fabrication of systems tailored to specific applications. Unfortunately, this is not what is seen to date, with 3D printing mostly reproducing "traditional" designs, using little of the "freedom of design" promised by the technology. We reason that these results come from too much focus on reproducing the electrochemical behavior of metallic electrodes instead of understanding how material properties impact the performance of 3D printed electrodes and working within these constraints. 3D printing will change electrochemistry and electroanalytical sciences if we understand and learn to work with its limitations.

2.
Analyst ; 149(15): 3900-3909, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-38912921

RESUMO

3D printing has attracted the interest of researchers due to its creative freedom, low cost, and ease of operation. Because of these features, this technology has produced different types of electroanalytical platforms. Despite their popularity, the thermoplastic composites used for electrode fabrication typically have high electrical resistance, resulting in devices with poor electrochemical performance. Herein, we propose a new strategy to improve the electrochemical performance of 3D-printed electrodes and to gain chemical selectivity towards glucose detection. The approach involves synthesising a nanostructured gold film using an infrared laser source directly on the surface of low-contact resistance 3D-printed electrodes. The laser parameters, such as power, focal distance, and beam scan rate, were carefully optimised for the modification steps. Scanning electronic microscopy and energy-dispersive X-ray spectroscopy confirmed the morphology and composition of the nanostructured gold film. After modification, the resulting electrodes were able to selectively detect glucose, encouraging their use for sensing applications. When compared with a gold disc electrode, the gold-modified 3D-printed electrode provided a 44-fold current increase for glucose oxidation. As proof of concept, the devices were utilised for the non-enzymatic catalytic determination of glucose in drink samples, demonstrating the gold film's catalytic nature and confirming the analytical applicability with more precise results than commercial glucometers.

3.
Anal Bioanal Chem ; 416(21): 4679-4690, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38664267

RESUMO

Prototyping analytical devices with three-dimensional (3D) printing techniques is becoming common in research laboratories. The attractiveness is associated with printers' price reduction and the possibility of creating customized objects that could form complete analytical systems. Even though 3D printing enables the rapid fabrication of electrochemical sensors, its wider adoption by research laboratories is hindered by the lack of reference material and the high "entry barrier" to the field, manifested by the need to learn how to use 3D design software and operate the printers. This review article provides insights into fused deposition modeling 3D printing, discussing key challenges in producing electrochemical sensors using currently available extrusion tools, which include desktop 3D printers and 3D printing pens. Further, we discuss the electrode processing steps, including designing, printing conditions, and post-treatment steps. Finally, this work shed some light on the current applications of such electrochemical devices that can be a reference material for new research involving 3D printing.

4.
Anal Chem ; 94(11): 4729-4736, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35255211

RESUMO

Indium tin oxide (ITO) is a popular electrode choice, with diverse applications in (photo)electrocatalysis, organic photovoltaics, spectroelectrochemistry and sensing, and as a support for cell biology studies. Although ITO surfaces exhibit heterogeneous local electrical conductivity, little is known as to how this translates to electrochemistry at the same scale. This work investigates nanoscale electrochemistry at ITO electrodes using high-resolution scanning electrochemical cell microscopy (SECCM). The nominally fast outer-sphere one-electron oxidation of 1,1'-ferrocenedimethanol (FcDM) is used as an electron transfer (ET) kinetic marker to reveal the charge transfer properties of the ITO/electrolyte interface. SECCM measures spatially resolved linear sweep voltammetry at an array of points across the ITO surface, with the topography measured synchronously. Presentation of SECCM data as current maps as a function of potential reveals that, while the entire surface of ITO is electroactive, the ET activity is highly spatially heterogeneous. Kinetic parameters (standard rate constant, k0, and transfer coefficient, α) for FcDM0/+ are assigned from 7200 measurements at sites across the ITO surface using finite element method modeling. Differences of 3 orders of magnitude in k0 are revealed, and the average k0 is about 20 times larger than that measured at the macroscale. This is attributed to macroscale ET being largely limited by lateral conductivity of the ITO electrode under electrochemical operation, rather than ET kinetics at the ITO/electrolyte interface, as measured by SECCM. This study further demonstrates the considerable power of SECCM for direct nanoscale characterization of electrochemical processes at complex electrode surfaces.


Assuntos
Compostos de Estanho , Eletroquímica , Eletrodos , Oxirredução , Compostos de Estanho/química
5.
Faraday Discuss ; 233(0): 122-148, 2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-34909815

RESUMO

We describe the combination of scanning electrochemical cell microscopy (SECCM) and interference reflection microscopy (IRM) to produce a compelling technique for the study of interfacial processes and to track the SECCM meniscus status in real-time. SECCM allows reactions to be confined to well defined nm-to-µm-sized regions of a surface, and for experiments to be repeated quickly and easily at multiple locations. IRM is a highly surface-sensitive technique which reveals processes happening (very) close to a substrate with temporal and spatial resolution commensurate with typical electrochemical techniques. By using thin transparent conductive layers on glass as substrates, IRM can be coupled to SECCM, to allow real-time in situ optical monitoring of the SECCM meniscus and of processes that occur within it at the electrode/electrolyte interface. We first use the technique to assess the stability of the SECCM meniscus during voltammetry at an indium tin oxide (ITO) electrode at close to neutral pH, demonstrating that the meniscus contact area is rather stable over a large potential window and reproducible, varying by only ca. 5% over different SECCM approaches. At high cathodic potentials, subtle electrowetting is easily detected and quantified. We also look inside the meniscus to reveal surface changes at extreme cathodic potentials, assigned to the possible formation of indium nanoparticles. Finally, we examine the effect of meniscus size and driving potential on CaCO3 precipitation at the ITO electrode as a result of electrochemically-generated pH swings. We are able to track the number, spatial distribution and morphology of material with high spatiotemporal resolution and rationalise some of the observed deposition patterns with finite element method modelling of reactive-transport. Growth of solid phases on surfaces from solution is an important pathway to functional materials and SECCM-IRM provides a means for in situ or in operando visualisation and tracking of these processes with improved fidelity. We anticipate that this technique will be particularly powerful for the study of phase formation processes, especially as the high throughput nature of SECCM-IRM (where each spot is a separate experiment) will allow for the creation of large datasets, exploring a wide experimental parameter landscape.

6.
Anal Chem ; 93(49): 16302-16307, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34846865

RESUMO

Nanopipettes are finding increasing use as nano "test tubes", with reactions triggered through application of an electrochemical potential between electrodes in the nanopipette and a bathing solution (bath). Key to this application is an understanding of how the applied potential induces mixing of the reagents from the nanopipette and the bath. Here, we demonstrate a laser scanning confocal microscope (LSCM) approach to tracking the ingress of dye into a nanopipette (20-50 nm diameter end opening). We examine the case of dianionic fluorescein under alkaline conditions (pH 11) and large applied tip potentials (±10 V), with respect to the bath, and surprisingly find that dye ingress from the bath into the nanopipette is not observed under either sign of potential. Finite element method (FEM) simulations indicate this is due to the dominance of electro-osmosis in mass transport, with electro-osmotic flow in the conventional direction at +10 V and electro-osmosis of the second kind acting in the same direction at -10 V, caused by the formation of significant space charge in the center of the orifice. The results highlight the significant deviation in mass transport behavior that emerges at the nanoscale and the utility of the combined LSCM and FEM approach in deepening understanding, which in turn should promote new applications of nanopipettes.


Assuntos
Microscopia Confocal , Osmose
7.
Anal Chem ; 93(36): 12281-12288, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34460243

RESUMO

Scanning ion conductance microscopy (SICM) is a powerful and versatile technique that allows an increasingly wide range of interfacial properties and processes to be studied. SICM employs a nanopipette tip that contains electrolyte solution and a quasi-reference counter electrode (QRCE), to which a potential is applied with respect to a QRCE in a bathing solution, in which the tip is placed. The work herein considers the potential-controlled delivery of uncharged electroactive molecules (solute) from an SICM tip to a working electrode substrate to determine the effect of the substrate on electroosmotic flow (EOF). Specifically, the local delivery of hydroquinone from the tip to a carbon fiber ultramicroelectrode (CF UME) provides a means of quantifying the rate of mass transport from the nanopipette and mapping electroactivity via the CF UME current response for hydroquinone oxidation to benzoquinone. EOF, and therefore species delivery, has a particularly strong dependence on the charge of the substrate surface at close nanopipette-substrate surface separations, with implications for retaining neutral solute within the tip predelivery and for the delivery process itself, both controlled via the applied tip potential. Finite element method (FEM) simulations of mass transport and reactivity are used to explain the experimental observations and identify the nature of EOF, including unusual flow patterns under certain conditions. The combination of experimental results with FEM simulations provides new insights on mass transport in SICM that will enhance quantitative applications and enable new possibilities for the use of nanopipettes for local delivery.


Assuntos
Eletro-Osmose , Microscopia , Eletrodos , Íons , Cintilografia
8.
Anal Chem ; 92(22): 14853-14860, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33095556

RESUMO

The use of 3D printing in research and teaching has significantly grown in the past years and has had a major impact on scientific practices. Despite the growing adoption driven by ever decreasing printer prices, the barrier to entry for 3D printing in research laboratories is still high due to the lack of basic reference material targeted at the scientific community. In this Feature, we introduce 3D printing as a tool for use in research laboratories, bridging the gap between scientists and 3D printing technology. This is not another 3D printing review but rather a guide which will help scientists to recognize the usefulness of 3D printing and to make an informed buying decision on their first 3D printer.

9.
Anal Chem ; 92(24): 16024-16032, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33241929

RESUMO

This paper reports on the use of scanning ion conductance microscopy (SICM) to locally map the ionic properties and charge environment of two live bacterial strains: the Gram-negative Escherichia coli and the Gram-positive Bacillus subtilis. SICM results find heterogeneities across the bacterial surface and significant differences among the Gram-positive and Gram-negative bacteria. The bioelectrical environment of the B. subtilis was found to be considerably more negatively charged compared to E. coli. SICM measurements, fitted to a simplified finite element method (FEM) model, revealed surface charge values of -80 to -140 mC m-2 for the Gram-negative E. coli. The Gram-positive B. subtilis show a much higher conductivity around the cell wall, and surface charge values between -350 and -450 mC m-2 were found using the same simplified model. SICM was also able to detect regions of high negative charge near B. subtilis, not detected in the topographical SICM response and attributed to the extracellular polymeric substance. To further explore how the B. subtilis cell wall structure can influence the SICM current response, a more comprehensive FEM model, accounting for the physical properties of the Gram-positive cell wall, was developed. The new model provides a more realistic description of the cell wall and allows investigation of the relation between its key properties and SICM currents, building foundations to further investigate and improve understanding of the Gram-positive cellular microenvironment.


Assuntos
Bacillus/citologia , Escherichia coli/citologia , Análise de Elementos Finitos , Microscopia , Bacillus/metabolismo , Parede Celular/metabolismo , Microambiente Celular , Escherichia coli/metabolismo
10.
Phys Chem Chem Phys ; 22(38): 22107-22115, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-32990693

RESUMO

Calcium carbonate (CaCO3) is one of the most well-studied and abundant natural materials on Earth. Crystallisation of CaCO3 is often observed to proceed via an amorphous calcium carbonate (ACC) phase, as a precursor to more stable crystalline polymorphs such as vaterite and calcite. Despite its importance, the kinetics of ACC formation have proved difficult to study, in part due to rapid precipitation at moderate supersaturations, and the instability of ACC with respect to all other polymorphs. However, ACC can be stabilised under confinement conditions, such as those provided by a nanopipette. This paper demonstrates electrochemical mixing of a Ca2+ salt (CaCl2) and a HCO3- salt (NaHCO3) in a nanopipette to repeatedly and reversibly precipitate nanoparticles of ACC under confined conditions, as confirmed by scanning transmission electron microscopy (STEM). Measuring the current as a function of applied potential across the end of the nanopipette and time provides millisecond-resolved measurements of the induction time for ACC precipitation. We demonstrate that under conditions of electrochemical mixing, ACC precipitation is extremely fast, and highly pH sensitive with an apparent third order dependence on CO32- concentration. Furthermore, the rate is very similar for the equivalent CO32- concentrations in D2O, suggesting that neither ion dehydration nor HCO3- deprotonation represent significant energetic barriers to the formation of ACC. Finite element method simulations of the electrochemical mixing process enable the supersaturation to be estimated for all conditions and accurately predict the location of precipitation.

11.
Anal Chem ; 89(17): 8643-8649, 2017 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-28741350

RESUMO

The design and fabrication of a versatile and low-cost electrochemical-scanning probe microscope (EC-SPM) is presented. The proposed equipment relies on the use of modern prototyping tools such as 3D printers and microcontroller boards and only a few "off-the-shelf" parts to deliver a simple yet powerful EC-SPM equipment capable of performing simple space-resolved electrochemical measurements. The equipment was able to perform space-resolved electrochemical measurements using a platinum ultramicroelectrode (UME) as the working electrode on a scanning electrochemical microscopy (SECM) configuration and was used to record approach curves, line scans, and array scans over an insulating substrate. The performance of the proposed equipment was found to be adequate for simple SECM measurements under hindered diffusion conditions. Because of its flexible design (software and hardware), more complex array scan patterns, only found on high-end EC-SPM setups such as hopping mode scan, were easily implemented on the built equipment. Despite its simplicity, the versatility and low cost of the proposed design make it an attractive alternative as a teaching platform as well as a platform for developing more elaborate EC-SPM setups.

14.
Anal Chem ; 88(5): 2838-46, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26798938

RESUMO

Scanning ion conductance microscopy (SICM) is a powerful technique for imaging the topography of a wide range of materials and interfaces. In this report, we develop the use and scope of SICM, showing how it can be used for mapping spatial distributions of ionic fluxes due to (electro)chemical reactions occurring at interfaces. The basic idea is that there is a change of ion conductance inside a nanopipet probe when it approaches an active site, where the ionic composition is different to that in bulk solution, and this can be sensed via the current flow in the nanopipet with an applied bias. Careful tuning of the tip potential allows the current response to be sensitive to either topography or activity, if desired. Furthermore, the use of a distance modulation SICM scheme allows reasonably faithful probe positioning using the resulting ac response, irrespective of whether there is a reaction at the interface that changes the local ionic composition. Both strategies (distance modulation or tuned bias) allow simultaneous topography-activity mapping with a single channel probe. The application of SICM reaction imaging is demonstrated on several examples, including voltammetric mapping of electrocatalytic reactions on electrodes and high-speed electrochemical imaging at rates approaching 4 s per image frame. These two distinct approaches provide movies of electrochemical current as a function of potential with hundreds of frames (images) of surface reactivity, to reveal a wealth of spatially resolved information on potential- (and time) dependent electrochemical phenomena. The experimental studies are supported by detailed finite element method modeling that places the technique on a quantitative footing.

16.
ACS Meas Sci Au ; 3(5): 361-370, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37868362

RESUMO

Ultramicroelectrode (UME), or, equivalently, microelectrode, probes are increasingly used for single-cell measurements of cellular properties and processes, including physiological activity, such as metabolic fluxes and respiration rates. Major challenges for the sensitivity of such measurements include: (i) the relative magnitude of cellular and UME fluxes (manifested in the current); and (ii) issues around the stability of the UME response over time. To explore the extent to which these factors impact the precision of electrochemical cellular measurements, we undertake a systematic analysis of measurement conditions and experimental parameters for determining single cell respiration rates via the oxygen consumption rate (OCR) in single HeLa cells. Using scanning electrochemical microscopy (SECM), with a platinum UME as the probe, we employ a self-referencing measurement protocol, rarely employed in SECM, whereby the UME is repeatedly approached from bulk solution to a cell, and a short pulse to oxygen reduction reaction (ORR) potential is performed near the cell and in bulk solution. This approach enables the periodic tracking of the bulk UME response to which the near-cell response is repeatedly compared (referenced) and also ensures that the ORR near the cell is performed only briefly, minimizing the effect of the electrochemical process on the cell. SECM experiments are combined with a finite element method (FEM) modeling framework to simulate oxygen diffusion and the UME response. Taking a realistic range of single cell OCR to be 1 × 10-18 to 1 × 10-16 mol s-1, results from the combination of FEM simulations and self-referencing SECM measurements show that these OCR values are at, or below, the present detection sensitivity of the technique. We provide a set of model-based suggestions for improving these measurements in the future but highlight that extraordinary improvements in the stability and precision of SECM measurements will be required if single cell OCR measurements are to be realized.

17.
ACS Appl Mater Interfaces ; 15(48): 56424-56432, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37982226

RESUMO

The concentration of environmental pollutants needs to be monitored constantly by reliable analytical methods since they pose a public health risk. Developing simple and affordable sensors for such pollutants can allow for large-scale monitoring economically. Here, we develop a simple electrochemical sensor for sulfanilamide (SFD) quantification using a phenolic resin substrate and a CO2 laser to pyrolyze the sensor geometry over the substrate. The sensors are modified with carbon nanotubes via a simple drop-casting procedure. The carbon nanotube loading effect the electrochemical performance toward a redox probe and analytical performance for SFD detection is investigated, showing no net benefit beyond 1 mg L-1 of carbon nanotubes. The effects of the modification on the SFD oxidation are shown to be more than just an electrode area effect and possibly attributed to the fast electron transfer kinetics of the carbon nanotubes. SFD detection is performed at small solution volumes under static (800 µL) and hydrodynamic conditions (3 mL) in a fully integrated, miniaturized batch-injection analyses cell. Both methods have a similar linear range from 10.0 to 115.0 µmol L-1 and high selectivity for SFD determination. Both systems are used to quantify SFD in real samples as a proof of concept, showcasing the proposed device's applicability as a sensor for environmental and public health monitoring of SFD.

18.
Annu Rev Anal Chem (Palo Alto Calif) ; 15(1): 247-267, 2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35259914

RESUMO

Surface charge density and distribution play an important role in almost all interfacial processes, influencing, for example, adsorption, colloidal stability, functional material activity, electrochemical processes, corrosion, nanoparticle toxicity, and cellular processes such as signaling, absorption, and adhesion. Understanding the heterogeneity in, and distribution of, surface and interfacial charge is key to elucidating the mechanisms underlying reactivity, the stability of materials, and biophysical processes. Atomic force microscopy (AFM) and scanning ion conductance microscopy (SICM) are highly suitable for probing the material/electrolyte interface at the nanoscale through recent advances in probe design, significant instrumental (hardware and software) developments, and the evolution of multifunctional imaging protocols. Here, we assess the capability of AFM and SICM for surface charge mapping, covering the basic underpinning principles alongside experimental considerations. We illustrate and compare the use of AFM and SICM for visualizing surface and interfacial charge with examples from materials science, geochemistry, and the life sciences.


Assuntos
Propriedades de Superfície , Adsorção , Microscopia de Força Atômica/métodos
19.
Anal Chim Acta ; 1146: 88-97, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33461723

RESUMO

Metabolic analysis in animals is usually either evaluated as whole-body measurements or in isolated tissue samples. To reveal tissue specificities in vivo, this study uses scanning electrochemical microscopy (SECM) to provide localized oxygen consumption rates (OCRs) in different regions of single adult Caenorhabditis elegans individuals. This is achieved by measuring the oxygen reduction current at the SECM tip electrode and using a finite element method model of the experiment that defines oxygen concentration and flux at the surface of the organism. SECM mapping measurements uncover a marked heterogeneity of OCR along the worm, with high respiration rates at the reproductive system region. To enable sensitive and quantitative measurements, a self-referencing approach is adopted, whereby the oxygen reduction current at the SECM tip is measured at a selected point on the worm and in bulk solution (calibration). Using genetic and pharmacological approaches, our SECM measurements indicate that viable eggs in the reproductive system are the main contributors in the total oxygen consumption of adult Caenorhabditis elegans. The finding that large regional differences in OCR exist within the animal provides a new understanding of oxygen consumption and metabolic measurements, paving the way for tissue-specific metabolic analyses and toxicity evaluation within single organisms.


Assuntos
Caenorhabditis elegans , Consumo de Oxigênio , Animais , Eletrodos , Genitália , Microscopia Eletroquímica de Varredura
20.
Nat Commun ; 12(1): 7110, 2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34876571

RESUMO

2D electrode materials are often deployed on conductive supports for electrochemistry and there is a great need to understand fundamental electrochemical processes in this electrode configuration. Here, an integrated experimental-theoretical approach is used to resolve the key electronic interactions in outer-sphere electron transfer (OS-ET), a cornerstone elementary electrochemical reaction, at graphene as-grown on a copper electrode. Using scanning electrochemical cell microscopy, and co-located structural microscopy, the classical hexaamineruthenium (III/II) couple shows the ET kinetics trend: monolayer > bilayer > multilayer graphene. This trend is rationalized quantitatively through the development of rate theory, using the Schmickler-Newns-Anderson model Hamiltonian for ET, with the explicit incorporation of electrostatic interactions in the double layer, and parameterized using constant potential density functional theory calculations. The ET mechanism is predominantly adiabatic; the addition of subsequent graphene layers increases the contact potential, producing an increase in the effective barrier to ET at the electrode/electrolyte interface.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA