Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
J Biol Chem ; 291(23): 12254-70, 2016 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-27129281

RESUMO

Purinergic homomeric P2X3 and heteromeric P2X2/3 receptors are ligand-gated cation channels activated by ATP. Both receptors are predominantly expressed in nociceptive sensory neurons, and an increase in extracellular ATP concentration under pathological conditions, such as tissue damage or visceral distension, induces channel opening, membrane depolarization, and initiation of pain signaling. Hence, these receptors are considered important therapeutic targets for pain management, and development of selective antagonists is currently progressing. To advance the search for novel analgesics, we have generated a panel of monoclonal antibodies directed against human P2X3 (hP2X3). We have found that these antibodies produce distinct functional effects, depending on the homomeric or heteromeric composition of the target, its kinetic state, and the duration of antibody exposure. The most potent antibody, 12D4, showed an estimated IC50 of 16 nm on hP2X3 after short term exposure (up to 18 min), binding to the inactivated state of the channel to inhibit activity. By contrast, with the same short term application, 12D4 potentiated the slow inactivating current mediated by the heteromeric hP2X2/3 channel. Extending the duration of exposure to ∼20 h resulted in a profound inhibition of both homomeric hP2X3 and heteromeric hP2X2/3 receptors, an effect mediated by efficient antibody-induced internalization of the channel from the plasma membrane. The therapeutic potential of mAb12D4 was assessed in the formalin, complete Freund's adjuvant, and visceral pain models. The efficacy of 12D4 in the visceral hypersensitivity model indicates that antibodies against P2X3 may have therapeutic potential in visceral pain indications.


Assuntos
Anticorpos Monoclonais/farmacologia , Antagonistas do Receptor Purinérgico P2X/farmacologia , Receptores Purinérgicos P2X2/imunologia , Receptores Purinérgicos P2X3/imunologia , Animais , Anticorpos Monoclonais/imunologia , Especificidade de Anticorpos/imunologia , Linhagem Celular Tumoral , Células Cultivadas , Feminino , Adjuvante de Freund , Células HEK293 , Humanos , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/prevenção & controle , Canais Iônicos/química , Canais Iônicos/metabolismo , Canais Iônicos/fisiologia , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Camundongos Endogâmicos BALB C , Microscopia Confocal , Dor/induzido quimicamente , Dor/metabolismo , Dor/prevenção & controle , Multimerização Proteica/imunologia , Ratos , Receptores Purinérgicos P2X2/química , Receptores Purinérgicos P2X2/metabolismo , Receptores Purinérgicos P2X3/química , Receptores Purinérgicos P2X3/metabolismo , Ácido Trinitrobenzenossulfônico , Dor Visceral/induzido quimicamente , Dor Visceral/metabolismo , Dor Visceral/prevenção & controle
2.
Bioconjug Chem ; 26(4): 650-9, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25643134

RESUMO

The systemic stability of the antibody-drug linker is crucial for delivery of an intact antibody-drug conjugate (ADC) to target-expressing tumors. Linkers stable in circulation but readily processed in the target cell are necessary for both safety and potency of the delivered conjugate. Here, we report a range of stabilities for an auristatin-based payload site-specifically attached through a cleavable valine-citrulline-p-aminobenzylcarbamate (VC-PABC) linker across various sites on an antibody. We demonstrate that the conjugation site plays an important role in determining VC-PABC linker stability in mouse plasma, and that the stability of the linker positively correlates with ADC cytotoxic potency both in vitro and in vivo. Furthermore, we show that the VC-PABC cleavage in mouse plasma is not mediated by Cathepsin B, the protease thought to be primarily responsible for linker processing in the lysosomal degradation pathway. Although the VC-PABC cleavage is not detected in primate plasma in vitro, linker stabilization in the mouse is an essential prerequisite for designing successful efficacy and safety studies in rodents during preclinical stages of ADC programs. The divergence of linker metabolism in mouse plasma and its intracellular cleavage offers an opportunity for linker optimization in the circulation without compromising its efficient payload release in the target cell.


Assuntos
Aminobenzoatos/química , Anticorpos Monoclonais/química , Antineoplásicos/química , Imunoconjugados/química , Oligopeptídeos/química , Neoplasias Pancreáticas/tratamento farmacológico , Aminobenzoatos/sangue , Aminobenzoatos/farmacocinética , Aminobenzoatos/farmacologia , Animais , Antineoplásicos/sangue , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Carbamatos/química , Catepsina B/química , Catepsina B/metabolismo , Linhagem Celular Tumoral , Dipeptídeos/química , Sistemas de Liberação de Medicamentos/métodos , Estabilidade de Medicamentos , Feminino , Humanos , Imunoconjugados/sangue , Imunoconjugados/farmacocinética , Imunoconjugados/farmacologia , Camundongos , Camundongos Nus , Modelos Moleculares , Oligopeptídeos/sangue , Oligopeptídeos/farmacocinética , Oligopeptídeos/farmacologia , Neoplasias Pancreáticas/sangue , Neoplasias Pancreáticas/patologia , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de Xenoenxerto
3.
eNeuro ; 10(6)2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37321845

RESUMO

Peripheral administration of tissue inhibitor of metalloproteinases 2 (TIMP2), a protein inhibitor of matrix metalloproteinases (MMPs), has previously been shown to have beneficial effects on cognition and neurons in aged mice. Here, to better understand the potential of recombinant TIMP2 proteins, an IgG4Fc fusion protein (TIMP2-hIgG4) was developed to extend the plasma half-life of TIMP2. Following one month of administration of TIMP2 or TIMP2-hIgG4 via intraperitoneal injections, 23-month-old male C57BL/6J mice showed improved hippocampal-dependent memory in a Y-maze, increased hippocampal cfos gene expression, and increased excitatory synapse density in the CA1 and dentate gyrus (DG) of the hippocampus. Thus, fusion to hIgG4 extended the half-life of TIMP2 while retaining the beneficial cognitive and neuronal effects. Moreover, it retained its ability to cross the blood-brain barrier. To deepen the mechanistic understanding of the beneficial function of TIMP2 on neuronal activity and cognition, a TIMP2 construct lacking MMP inhibitory activity, Ala-TIMP2, was generated, which provides steric hindrance that prevents inhibition of MMPs by the TIMP2 protein while still allowing MMP binding. A comprehensive assessment of the MMP inhibitory and binding capacity of these engineered proteins is outlined. Surprisingly, MMP inhibition by TIMP2 was not essential for its beneficial effects on cognition and neuronal function. These findings both confirm previously published research, expand on the potential mechanism for the beneficial effects of TIMP2, and provide important details for a therapeutic path forward for TIMP2 recombinant proteins in aging-related cognitive decline.


Assuntos
Cognição , Metaloproteinases da Matriz , Animais , Masculino , Camundongos , Envelhecimento , Metaloproteinases da Matriz/metabolismo , Camundongos Endogâmicos C57BL
4.
Infect Immun ; 80(6): 2221-30, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22451517

RESUMO

Listeriolysin O (LLO) is a pore-forming toxin of the cholesterol-dependent cytolysin (CDC) family and a primary virulence factor of the intracellular pathogen Listeria monocytogenes. LLO mediates rupture of phagosomal membranes, thereby releasing bacteria into the growth-permissive host cell cytosol. Several unique features of LLO allow its activity to be precisely regulated in order to facilitate phagosomal escape, intracellular growth, and cell-to-cell spread. To improve our understanding of the multifaceted contribution of LLO to the pathogenesis of L. monocytogenes, we developed a screen that combined saturation mutagenesis and signature tags, termed in vivo analysis by saturation mutagenesis and signature tags (IVASS). We generated a library of LLO mutant strains, each harboring a single amino acid substitution and a signature tag, by using the previously described pPL2 integration vector. The signature tags acted as molecular barcodes, enabling high-throughput, parallel analysis of 40 mutants in a single animal and identification of attenuated mutants by negative selection. Using the IVASS technique we were able to screen over 90% of the 505 amino acids present in LLO and identified 60 attenuated mutants. Of these, 39 LLO residues were previously uncharacterized and potentially revealed novel functions of the toxin during infection. The mutants that were subsequently analyzed in vivo each conferred a 2- to 4-orders of magnitude loss in virulence compared to wild type, thereby validating the screening methods. Phenotypic analysis of the LLO mutant library using common in vitro techniques suggested that the functional contributions of some residues could only have been revealed through in vivo analysis.


Assuntos
Toxinas Bacterianas/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas Hemolisinas/metabolismo , Listeria monocytogenes/patogenicidade , Alanina , Sequência de Aminoácidos , Animais , Toxinas Bacterianas/genética , DNA Bacteriano , Feminino , Regulação Bacteriana da Expressão Gênica/fisiologia , Proteínas de Choque Térmico/genética , Proteínas Hemolisinas/genética , Listeria monocytogenes/genética , Camundongos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação , Fenótipo , Reação em Cadeia da Polimerase , Conformação Proteica , Estrutura Terciária de Proteína
5.
Infect Immun ; 80(2): 720-32, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22083714

RESUMO

Listeria monocytogenes causes a serious food-borne disease due to its ability to spread from the intestine to other organs, a process that is poorly understood. In this study we used 20 signature-tagged wild-type clones of L. monocytogenes in guinea pigs in combination with extensive quantitative data analysis to gain insight into extraintestinal dissemination. We show that L. monocytogenes colonized the liver in all asymptomatic animals. Spread to the liver occurred as early as 4 h after ingestion via a direct pathway from the intestine to the liver. This direct pathway contributed significantly to the bacterial load in the liver and was followed by a second wave of dissemination via the mesenteric lymph nodes (indirect pathway). Furthermore, bacteria were eliminated in the liver, whereas small intestinal villi provided a niche for bacterial replication, indicating organ-specific differences in net bacterial growth. Bacteria were shed back from intestinal villi into the small intestinal lumen and reinfected the Peyer's patches. Together, these results support a novel dissemination model where L. monocytogenes replicates in intestinal villi, is shed into the lumen, and reinfects intestinal immune cells that traffic to liver and mesenteric lymph nodes, a process that occurs even during asymptomatic colonization.


Assuntos
Intestinos/microbiologia , Listeria monocytogenes , Listeriose/microbiologia , Fígado/microbiologia , Linfonodos/microbiologia , Animais , Carga Bacteriana , Feminino , Cobaias , Listeriose/patologia , Baço/microbiologia , Fatores de Tempo
6.
Infect Immun ; 77(3): 943-51, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19139192

RESUMO

Clostridium septicum alpha-toxin is a beta-barrel pore-forming cytolysin that is functionally similar to aerolysin. Residues important in receptor binding, oligomerization, and pore formation have been identified; however, little is known about the activity of the toxin in an infection, although it is essential for disease. We have now shown that deletion of a small portion of the transmembrane domain, so that the toxin is no longer able to form pores, completely abrogates its ability to contribute to disease, as does replacement of the sole cysteine residue with leucine. However, although previous biochemical and cytotoxicity assays clearly indicated that mutations in residues important in oligomerization, binding, and prepore conversion greatly reduced activity or rendered the toxin inactive, once the mutated toxins were overexpressed by the natural host in the context of an infection it was found they were able to cause disease in a mouse model of myonecrosis. These results highlight the importance of testing the activity of virulence determinants in the normal host background and in an infectious disease context and provide unequivocal evidence that it is the ability of alpha-toxin to form a pore that confers its toxicity in vivo.


Assuntos
Toxinas Bacterianas/metabolismo , Infecções por Clostridium/patologia , Clostridium septicum/patogenicidade , Músculo Esquelético/microbiologia , Músculo Esquelético/patologia , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Animais , Toxinas Bacterianas/genética , Western Blotting , Infecções por Clostridium/genética , Infecções por Clostridium/metabolismo , Camundongos , Necrose , Proteínas Citotóxicas Formadoras de Poros/genética
8.
Sci Rep ; 9(1): 8420, 2019 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-31182754

RESUMO

Human CLDN18.2 is highly expressed in a significant proportion of gastric and pancreatic adenocarcinomas, while normal tissue expression is limited to the epithelium of the stomach. The restricted expression makes it a potential drug target for the treatment of gastric and pancreatic adenocarcinoma, as evidenced by efforts to target CLDN18.2 via naked antibody and CAR-T modalities. Herein we describe CLDN18.2-targeting via a CD3-bispecific and an antibody drug conjugate and the characterization of these potential therapeutic molecules in efficacy and preliminary toxicity studies. Anti-hCLDN18.2 ADC, CD3-bispecific and diabody, targeting a protein sequence conserved in rat, mouse and monkey, exhibited in vitro cytotoxicity in BxPC3/hCLDN18.2 (IC50 = 1.52, 2.03, and 0.86 nM) and KATO-III/hCLDN18.2 (IC50 = 1.60, 0.71, and 0.07 nM) respectively and inhibited tumor growth of pancreatic and gastric patient-derived xenograft tumors. In a rat exploratory toxicity study, the ADC was tolerated up to 10 mg/kg. In a preliminary assessment of tolerability, the anti-CLDN18.2 diabody (0.34 mg/kg) did not produce obvious signs of toxicity in the stomach of NSG mice 4 weeks after dosing. Taken together, our data indicate that targeting CLDN18.2 with an ADC or bispecific modality could be a valid therapeutic approach for the treatment of gastric and pancreatic cancer.


Assuntos
Anticorpos Biespecíficos/imunologia , Complexo CD3/imunologia , Claudinas/imunologia , Imunoconjugados/uso terapêutico , Neoplasias Pancreáticas/terapia , Neoplasias Gástricas/terapia , Adenocarcinoma/terapia , Animais , Carcinoma Ductal Pancreático/terapia , Linhagem Celular Tumoral , Humanos , Imunoconjugados/sangue , Camundongos , Neoplasias Pancreáticas/sangue , Ratos , Neoplasias Gástricas/sangue
9.
Infect Immun ; 76(8): 3439-50, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18474644

RESUMO

While recombinant Listeria monocytogenes strains can be explored as vaccine candidates, it is important to develop attenuated but highly immunogenic L. monocytogenes vaccine vectors. Here, prfA* mutations selected on the basis of upregulated expression of L. monocytogenes PrfA-dependent genes and proteins were assessed to determine their abilities to augment expression of foreign immunogens in recombinant L. monocytogenes vectors and therefore enhance vaccine-elicited immune responses (a prfA* mutation is a mutation that results in constitutive overexpression of PrfA and PrfA-dependent virulence genes; the asterisk distinguishes the mutation from inactivation or stop mutations). A total of 63 recombinant L. monocytogenes vaccine vectors expressing seven individual viral or bacterial immunogens each in nine different L. monocytogenes strains carrying wild-type prfA or having prfA* mutations were constructed and investigated. Mutations selected on the basis of increased PrfA activation in recombinant L. monocytogenes prfA* vaccine vectors augmented expression of seven individual protein immunogens remarkably. Consistently, prime and boost vaccination studies with mice indicated that the prfA(G155S) mutation in recombinant L. monocytogenes DeltaactA prfA* strains enhanced vaccine-elicited cellular immune responses. Surprisingly, the prfA(G155S) mutation was found to enhance vaccine-elicited humoral immune responses as well. The highly immunogenic recombinant L. monocytogenes DeltaactA prfA* vaccine strains were as attenuated as the recombinant parent L. monocytogenes DeltaactA vaccine vector. Thus, recombinant attenuated L. monocytogenes DeltaactA prfA* vaccine vectors potentially are better antimicrobial and anticancer vaccines.


Assuntos
Vacinas Bacterianas/imunologia , Listeria monocytogenes/genética , Mutação , Fatores de Terminação de Peptídeos/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/imunologia , Animais , Anticorpos Antibacterianos/sangue , Anticorpos Antivirais/sangue , Vacinas Bacterianas/genética , Ensaio de Imunoadsorção Enzimática , Feminino , Imunização Secundária , Interferon gama/biossíntese , Listeria monocytogenes/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Linfócitos T/imunologia , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia
10.
Protein Sci ; 25(2): 442-55, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26481561

RESUMO

Applications of microbial transglutaminase (mTGase) produced from Streptomyces mobarensis (S. mobarensis) were recently extended from food to pharmaceutical industry. To use mTGase for clinical applications, like generation of site specific antibody drug conjugates, it would be beneficial to manufacture mTGase in Escherichia coli (E. coli). To date, attempts to express recombinant soluble and active S. mobarensis mTGase have been largely unsuccessful. mTGase from S. mobarensis is naturally expressed as proenzyme and stepwise proteolytically processed into its active mature form outside of the bacterial cell. The pro-domain is essential for correct folding of mTGase as well as for inhibiting activity of mTGase inside the cell. Here, we report a genetically modified mTGase that has full activity and can be expressed at high yields in the cytoplasm of E. coli. To achieve this we performed an alanine-scan of the mTGase pro-domain and identified mutants that maintain its chaperone function but destabilize the cleaved pro-domain/mTGase interaction in a temperature dependent fashion. This allows proper folding of mTGase and keeps the enzyme inactive during expression at 20°C, but results in full activity when shifted to 37°C due to loosen domain interactions. The insertion of the 3C protease cleavage site together with pro-domain alanine mutants Tyr14, Ile24, or Asn25 facilitate high yields (30-75 mg/L), and produced an enzyme with activity identical to wild type mTGase from S. mobarensis. Site-specific antibody drug conjugates made with the E .coli produced mTGase demonstrated identical potency in an in vitro cell assay to those made with mTGase from S. mobarensis.


Assuntos
Escherichia coli/genética , Imunoconjugados/metabolismo , Engenharia de Proteínas , Streptomyces/enzimologia , Transglutaminases/genética , Transglutaminases/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Precursores Enzimáticos/química , Precursores Enzimáticos/genética , Precursores Enzimáticos/isolamento & purificação , Precursores Enzimáticos/metabolismo , Expressão Gênica , Microbiologia Industrial , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese , Mutação , Plasmídeos/genética , Estrutura Terciária de Proteína , Solubilidade , Streptomyces/química , Streptomyces/genética , Transglutaminases/química , Transglutaminases/isolamento & purificação
11.
Nat Commun ; 7: 13376, 2016 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-27857134

RESUMO

Staphylococcus aureus is both an important pathogen and a human commensal. To explore this ambivalent relationship between host and microbe, we analysed the memory humoral response against IsdB, a protein involved in iron acquisition, in four healthy donors. Here we show that in all donors a heavily biased use of two immunoglobulin heavy chain germlines generated high affinity (pM) antibodies that neutralize the two IsdB NEAT domains, IGHV4-39 for NEAT1 and IGHV1-69 for NEAT2. In contrast to the typical antibody/antigen interactions, the binding is primarily driven by the germline-encoded hydrophobic CDRH-2 motifs of IGHV1-69 and IGHV4-39, with a binding mechanism nearly identical for each antibody derived from different donors. Our results suggest that IGHV1-69 and IGHV4-39, while part of the adaptive immune system, may have evolved under selection pressure to encode a binding motif innately capable of recognizing and neutralizing a structurally conserved protein domain involved in pathogen iron acquisition.


Assuntos
Anticorpos Antibacterianos/imunologia , Proteínas de Bactérias/imunologia , Infecções Estafilocócicas/microbiologia , Fatores de Virulência/imunologia , Anticorpos Neutralizantes , Linfócitos B , Humanos , Memória Imunológica , Modelos Moleculares , Conformação Proteica , Domínios Proteicos , RNA Longo não Codificante , Infecções Estafilocócicas/imunologia , Staphylococcus aureus
12.
J Mol Biol ; 427(6 Pt B): 1513-1534, 2015 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-25284753

RESUMO

The ability of antibodies to bind an antigen with a high degree of affinity and specificity has led them to become the largest and fastest growing class of therapeutic proteins. Clearly identifying the epitope at which they bind their cognate antigen provides insight into their mechanism of action and helps differentiate antibodies that bind the same antigen. Here, we describe a method to precisely and efficiently map the epitopes of a panel of antibodies in parallel over the course of several weeks. This method relies on the combination of rational library design, quantitative yeast surface display and next-generation DNA sequencing and was demonstrated by mapping the epitopes of several antibodies that neutralize alpha toxin from Staphylococcus aureus. The accuracy of this method was confirmed by comparing the results to the co-crystal structure of one antibody and alpha toxin and was further refined by the inclusion of a lower-affinity variant of the antibody. In addition, this method produced quantitative insight into the epitope residues most critical for the antibody-antigen interaction and enabled the relative affinities of each antibody toward alpha toxin variants to be estimated. This affinity estimate serves as a predictor of neutralizing antibody potency and was used to anticipate the ability of each antibody to effectively bind and neutralize naturally occurring alpha toxin variants secreted by strains of S. aureus, including clinically relevant strains. Ultimately this type information can be used to help select the best clinical candidate among a set of antibodies against a given antigen.


Assuntos
Anticorpos Monoclonais/imunologia , Toxinas Bacterianas/imunologia , Epitopos/análise , Proteínas Hemolisinas/imunologia , Sequenciamento de Nucleotídeos em Larga Escala , Biblioteca de Peptídeos , Saccharomyces cerevisiae/imunologia , Infecções Estafilocócicas/prevenção & controle , Sequência de Aminoácidos , Anticorpos Monoclonais/genética , Toxinas Bacterianas/genética , Mapeamento de Epitopos/métodos , Epitopos/química , Epitopos/genética , Epitopos/imunologia , Citometria de Fluxo , Proteínas Hemolisinas/genética , Humanos , Dados de Sequência Molecular , Conformação Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Infecções Estafilocócicas/imunologia , Staphylococcus aureus/genética , Staphylococcus aureus/imunologia
13.
PLoS One ; 10(7): e0132282, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26161543

RESUMO

The efficacy of an antibody-drug conjugate (ADC) is dependent on the properties of its linker-payload which must remain stable while in systemic circulation but undergo efficient processing upon internalization into target cells. Here, we examine the stability of a non-cleavable Amino-PEG6-based linker bearing the monomethyl auristatin D (MMAD) payload site-specifically conjugated at multiple positions on an antibody. Enzymatic conjugation with transglutaminase allows us to create a stable amide linkage that remains intact across all tested conjugation sites on the antibody, and provides us with an opportunity to examine the stability of the auristatin payload itself. We report a position-dependent degradation of the C terminus of MMAD in rodent plasma that has a detrimental effect on its potency. The MMAD cleavage can be eliminated by either modifying the C terminus of the toxin, or by selection of conjugation site. Both approaches result in improved stability and potency in vitro and in vivo. Furthermore, we show that the MMAD metabolism in mouse plasma is likely mediated by a serine-based hydrolase, appears much less pronounced in rat, and was not detected in cynomolgus monkey or human plasma. Clarifying these species differences and controlling toxin degradation to optimize ADC stability in rodents is essential to make the best ADC selection from preclinical models. The data presented here demonstrate that site selection and toxin susceptibility to mouse plasma degradation are important considerations in the design of non-cleavable ADCs, and further highlight the benefits of site-specific conjugation methods.


Assuntos
Aminobenzoatos/farmacocinética , Portadores de Fármacos/farmacocinética , Oligopeptídeos/farmacocinética , Aminobenzoatos/administração & dosagem , Aminobenzoatos/química , Animais , Anticorpos/administração & dosagem , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/química , Estabilidade de Medicamentos , Feminino , Células HEK293 , Humanos , Macaca fascicularis , Camundongos SCID , Oligopeptídeos/administração & dosagem , Oligopeptídeos/química , Ratos
14.
PLoS One ; 8(1): e54886, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23365682

RESUMO

Assays for bacterial ribosomal RNA precursors (pre-rRNA) have been shown to distinguish viable from inactivated bacterial cells in drinking water samples. Because the synthesis of pre-rRNA is rapidly induced by nutritional stimulation, viable bacteria can be distinguished from inactivated cells and free nucleic acids by measuring the production of species-specific pre-rRNA in samples that have been briefly stimulated with nutrients. Here, pre-rRNA analysis was applied to bacteria from serum, a human sample matrix. In contrast to drinking water, serum is rich in nutrients that might be expected to mask the effects of nutritional stimulation. Reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) assays were used to detect pre-rRNA of four bacterial species: Acinetobacter baumannii, Pseudomonas aeruginosa, Staphylococcus aureus, and the Mycobacterium tuberculosis complex. These species were chosen for their clinical significance and phylogenetic diversity (Proteobacteria, Firmicutes, and Actinobacteria). To maximize resolving power, pre-rRNA was normalized to genomic DNA of each pathogen. When viable cells were shifted from serum to bacteriological culture medium, rapid replenishment of pre-rRNA was always observed. Cells of P. aeruginosa that were inactivated in the presence of serum exhibited no pre-rRNA response to nutritional stimulation, despite strong genomic DNA signals in these samples. When semi-automated methods were used, pre-rRNA analysis detected viable A. baumannii cells in serum at densities of ≤100 CFU/mL in <5.5 hours. Originally developed for rapid microbiological analysis of drinking water, ratiometric pre-rRNA analysis can also assess the viability of bacterial cells derived from human specimens, without requiring bacteriological culture.


Assuntos
DNA Bacteriano/sangue , Viabilidade Microbiana , Precursores de RNA/sangue , RNA Bacteriano/sangue , Soro/microbiologia , Acinetobacter baumannii/genética , Acinetobacter baumannii/isolamento & purificação , Contagem de Colônia Microbiana , Meios de Cultura , Humanos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/isolamento & purificação , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/isolamento & purificação , Staphylococcus aureus/genética , Staphylococcus aureus/isolamento & purificação
15.
Biochemistry ; 45(48): 14347-54, 2006 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-17128973

RESUMO

Alpha toxin (AT) is the major virulence factor of Clostridium septicum that is a proteolytically activated pore-forming toxin that belongs to the aerolysin-like family of toxins. AT is predicted to be a three-domain molecule on the basis of its functional and sequence similarity with aerolysin, for which the crystal structure has been determined. In this study, we have substituted the entire primary structure of AT with alanine or cysteine to identify those amino acids that comprise functional domains involved in receptor binding, oligomerization, and pore formation. These studies revealed that receptor binding is restricted to domain 1 of the AT structure, whereas domains 1 and 3 are involved in oligomerization. These studies also revealed the presence of a putative functional region of AT proximal to the receptor-binding domain but distal from the pore-forming domain that is proposed to regulate the insertion of the transmembrane beta-hairpin of the prepore oligomer.


Assuntos
Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Clostridium septicum/química , Clostridium septicum/metabolismo , Sequência de Aminoácidos , Toxinas Bacterianas/genética , Sítios de Ligação , Clostridium septicum/genética , Sequência Conservada , Cristalografia por Raios X , Cisteína/genética , Cisteína/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Mutação/genética , Estrutura Terciária de Proteína , Alinhamento de Sequência , Homologia Estrutural de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA