Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Cell ; 184(22): 5622-5634.e25, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34610277

RESUMO

Disinhibitory neurons throughout the mammalian cortex are powerful enhancers of circuit excitability and plasticity. The differential expression of neuropeptide receptors in disinhibitory, inhibitory, and excitatory neurons suggests that each circuit motif may be controlled by distinct neuropeptidergic systems. Here, we reveal that a bombesin-like neuropeptide, gastrin-releasing peptide (GRP), recruits disinhibitory cortical microcircuits through selective targeting and activation of vasoactive intestinal peptide (VIP)-expressing cells. Using a genetically encoded GRP sensor, optogenetic anterograde stimulation, and trans-synaptic tracing, we reveal that GRP regulates VIP cells most likely via extrasynaptic diffusion from several local and long-range sources. In vivo photometry and CRISPR-Cas9-mediated knockout of the GRP receptor (GRPR) in auditory cortex indicate that VIP cells are strongly recruited by novel sounds and aversive shocks, and GRP-GRPR signaling enhances auditory fear memories. Our data establish peptidergic recruitment of selective disinhibitory cortical microcircuits as a mechanism to regulate fear memories.


Assuntos
Córtex Auditivo/metabolismo , Bombesina/metabolismo , Medo/fisiologia , Memória/fisiologia , Rede Nervosa/metabolismo , Sequência de Aminoácidos , Animais , Cálcio/metabolismo , Sinalização do Cálcio , Condicionamento Clássico , Peptídeo Liberador de Gastrina/química , Peptídeo Liberador de Gastrina/metabolismo , Regulação da Expressão Gênica , Genes Precoces , Células HEK293 , Humanos , Espaço Intracelular/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Receptores da Bombesina/metabolismo , Som , Peptídeo Intestinal Vasoativo/metabolismo
2.
Nat Rev Neurosci ; 21(9): 499-515, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32747763

RESUMO

It is still widely thought that cortical projections to distant brain areas derive by and large from glutamatergic neurons. However, an increasing number of reports provide evidence that cortical GABAergic neurons comprise a smaller population of 'projection neurons' in addition to the well-known and much-studied interneurons. GABAergic long-range axons that derive from, or project to, cortical areas are thought to entrain distant brain areas for efficient information transfer and processing. Research conducted over the past 10 years has revealed that cortical GABAergic projection neurons are highly diverse in terms of molecular marker expression, synaptic targeting (identity of targeted cell types), activity pattern during distinct behavioural states and precise temporal recruitment relative to ongoing neuronal network oscillations. As GABAergic projection neurons connect many cortical areas unidirectionally or bidirectionally, it is safe to assume that they participate in the modulation of a whole series of behavioural and cognitive functions. We expect future research to examine how long-range GABAergic projections fine-tune activity in distinct distant networks and how their recruitment alters the behaviours that are supported by these networks.


Assuntos
Comportamento Animal/fisiologia , Encéfalo/fisiologia , Córtex Cerebral/fisiologia , Neurônios GABAérgicos/fisiologia , Vias Neurais/fisiologia , Animais
3.
Mol Psychiatry ; 27(5): 2602-2618, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35246635

RESUMO

A hallmark of the anterior cingulate cortex (ACC) is its functional heterogeneity. Functional and imaging studies revealed its importance in the encoding of anxiety-related and social stimuli, but it is unknown how microcircuits within the ACC encode these distinct stimuli. One type of inhibitory interneuron, which is positive for vasoactive intestinal peptide (VIP), is known to modulate the activity of pyramidal cells in local microcircuits, but it is unknown whether VIP cells in the ACC (VIPACC) are engaged by particular contexts or stimuli. Additionally, recent studies demonstrated that neuronal representations in other cortical areas can change over time at the level of the individual neuron. However, it is not known whether stimulus representations in the ACC remain stable over time. Using in vivo Ca2+ imaging and miniscopes in freely behaving mice to monitor neuronal activity with cellular resolution, we identified individual VIPACC that preferentially activated to distinct stimuli across diverse tasks. Importantly, although the population-level activity of the VIPACC remained stable across trials, the stimulus-selectivity of individual interneurons changed rapidly. These findings demonstrate marked functional heterogeneity and instability within interneuron populations in the ACC. This work contributes to our understanding of how the cortex encodes information across diverse contexts and provides insight into the complexity of neural processes involved in anxiety and social behavior.


Assuntos
Giro do Cíngulo , Peptídeo Intestinal Vasoativo , Animais , Giro do Cíngulo/metabolismo , Interneurônios/metabolismo , Camundongos , Neurônios/metabolismo , Células Piramidais/metabolismo , Peptídeo Intestinal Vasoativo/metabolismo
4.
J Exp Biol ; 221(Pt 3)2018 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-29439060

RESUMO

Neuropeptides are the most diverse class of chemical modulators in nervous systems. They contribute to extensive modulation of circuit activity and have profound influences on animal physiology. Studies on invertebrate model organisms, including the fruit fly Drosophila melanogaster and the nematode Caenorhabditis elegans, have enabled the genetic manipulation of peptidergic signalling, contributing to an understanding of how neuropeptides pattern the output of neural circuits to underpin behavioural adaptation. Electrophysiological and pharmacological analyses of well-defined microcircuits, such as the crustacean stomatogastric ganglion, have provided detailed insights into neuropeptide functions at a cellular and circuit level. These approaches can be increasingly applied in the mammalian brain by focusing on circuits with a defined and identifiable sub-population of neurons. Functional analyses of neuropeptide systems have been underpinned by systematic studies to map peptidergic networks. Here, we review the general principles and mechanistic insights that have emerged from these studies. We also highlight some of the challenges that remain for furthering our understanding of the functional relevance of peptidergic modulation.


Assuntos
Encéfalo/metabolismo , Invertebrados/fisiologia , Neurônios/fisiologia , Neuropeptídeos/metabolismo , Transdução de Sinais/fisiologia , Vertebrados/fisiologia , Animais
5.
Nat Commun ; 13(1): 5571, 2022 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-36137999

RESUMO

In vivo optogenetics and photopharmacology are two techniques for controlling neuronal activity that have immense potential in neuroscience research. Their applications in tether-free groups of animals have been limited in part due to tools availability. Here, we present a wireless, battery-free, programable multilateral optofluidic platform with user-selected modalities for optogenetics, pharmacology and photopharmacology. This system features mechanically compliant microfluidic and electronic interconnects, capabilities for dynamic control over the rates of drug delivery and real-time programmability, simultaneously for up to 256 separate devices in a single cage environment. Our behavioral experiments demonstrate control of motor behaviors in grouped mice through in vivo optogenetics with co-located gene delivery and controlled photolysis of caged glutamate. These optofluidic systems may expand the scope of wireless techniques to study neural processing in animal models.


Assuntos
Neurociências , Optogenética , Animais , Encéfalo/fisiologia , Glutamatos , Camundongos , Optogenética/métodos , Tecnologia sem Fio
6.
Cell Rep ; 19(5): 1045-1055, 2017 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-28467898

RESUMO

The motor cortico-basal ganglion loop is critical for motor planning, execution, and learning. Balanced excitation and inhibition in this loop is crucial for proper motor output. Excitatory neurons have been thought to be the only source of motor cortical input to the striatum. Here, we identify long-range projecting GABAergic neurons in the primary (M1) and secondary (M2) motor cortex that target the dorsal striatum. This population of projecting GABAergic neurons comprises both somatostatin-positive (SOM+) and parvalbumin-positive (PV+) neurons that target direct and indirect pathway striatal output neurons as well as cholinergic interneurons differentially. Notably, optogenetic stimulation of M1 PV+ and M2 SOM+ projecting neurons reduced locomotion, whereas stimulation of M1 SOM+ projecting neurons enhanced locomotion. Thus, corticostriatal GABAergic projections modulate striatal output and motor activity.


Assuntos
Corpo Estriado/fisiologia , Neurônios GABAérgicos/metabolismo , Atividade Motora , Animais , Neurônios Colinérgicos/metabolismo , Neurônios Colinérgicos/fisiologia , Corpo Estriado/citologia , Corpo Estriado/metabolismo , Vias Eferentes/metabolismo , Vias Eferentes/fisiologia , Neurônios GABAérgicos/fisiologia , Interneurônios/metabolismo , Interneurônios/fisiologia , Masculino , Camundongos , Parvalbuminas/genética , Parvalbuminas/metabolismo , Somatostatina/genética , Somatostatina/metabolismo
7.
Nat Neurosci ; 19(7): 935-44, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27182817

RESUMO

The lateral entorhinal cortex (LEC) computes and transfers olfactory information from the olfactory bulb to the hippocampus. Here we established LEC connectivity to upstream and downstream brain regions to understand how the LEC processes olfactory information. We report that, in layer II (LII), reelin- and calbindin-positive (RE(+) and CB(+)) neurons constitute two major excitatory cell types that are electrophysiologically distinct and differentially connected. RE(+) neurons convey information to the hippocampus, while CB(+) neurons project to the olfactory cortex and the olfactory bulb. In vivo calcium imaging revealed that RE(+) neurons responded with higher selectivity to specific odors than CB(+) neurons and GABAergic neurons. At the population level, odor discrimination was significantly better for RE(+) than CB(+) neurons, and was lowest for GABAergic neurons. Thus, we identified in LII of the LEC anatomically and functionally distinct neuronal subpopulations that engage differentially in feedforward and feedback signaling during odor processing.


Assuntos
Potenciais de Ação/fisiologia , Córtex Entorrinal/fisiologia , Hipocampo/fisiologia , Neurônios/fisiologia , Odorantes , Olfato/fisiologia , Animais , Hipocampo/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Bulbo Olfatório/metabolismo , Técnicas de Patch-Clamp/métodos , Proteína Reelina
8.
Neuron ; 89(1): 194-208, 2016 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-26711115

RESUMO

Layer II (LII) of the medial entorhinal cortex (MEC) comprises grid cells that support spatial navigation. The firing pattern of grid cells might be explained by attractor dynamics in a network, which requires either direct excitatory connectivity between phase-specific grid cells or indirect coupling via interneurons. However, knowledge regarding local networks that support in vivo activity is incomplete. Here we identified essential components of LII networks in the MEC. We distinguished four types of excitatory neurons that exhibit cell-type-specific local excitatory and inhibitory connectivity. Furthermore, we found that LII neurons contribute to the excitation of contralateral neurons in the corresponding layer. Finally, we demonstrated that the medial septum controls excitation in the MEC via two subpopulations of long-range GABAergic neurons that target distinct interneurons in LII, thereby disinhibiting local circuits. We thus identified local connections that could support attractor dynamics and external inputs that likely govern excitation in LII.


Assuntos
Potenciais de Ação/fisiologia , Córtex Entorrinal/fisiologia , Neurônios GABAérgicos/fisiologia , Interneurônios/fisiologia , Rede Nervosa/fisiologia , Animais , Camundongos Transgênicos , Modelos Neurológicos
9.
Curr Opin Neurobiol ; 23(2): 179-86, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23394773

RESUMO

GABA (γ-aminobutyric acid) is the primary inhibitory neurotransmitter in the adult brain. Studies on GABAergic cells have focused almost exclusively on local interneurons neglecting those inhibitory neurons projecting to different brain areas, the 'long-range GABAergic cells'. This review focuses on some common features and peculiarities of 'corticofugal' and 'corticopetal' GABAergic cells. Similarly to their local counterpart, long-range GABAergic cells show immunohistochemical diversity and contact locally both excitatory and inhibitory cells. Distally, long-range GABAergic cells often target other inhibitory neurons. This feature endows them with the ability to control remote target areas via disinhibition. On the basis of few functional studies that investigated their participation in synchronous network activity, we propose that long-range GABAergic neurons play a critical role in the temporal coordination of neuronal activity in distant brain areas.


Assuntos
Encéfalo/citologia , Neurônios GABAérgicos/fisiologia , Rede Nervosa/fisiologia , Vias Neurais/fisiologia , Animais , Humanos , Interneurônios/fisiologia , Inibição Neural/fisiologia
10.
Science ; 335(6075): 1506-10, 2012 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-22442486

RESUMO

The hippocampus and entorhinal cortex play a pivotal role in spatial learning and memory. The two forebrain regions are highly interconnected via excitatory pathways. Using optogenetic tools, we identified and characterized long-range γ-aminobutyric acid-releasing (GABAergic) neurons that provide a bidirectional hippocampal-entorhinal inhibitory connectivity and preferentially target GABAergic interneurons. Activation of long-range GABAergic axons enhances sub- and suprathreshold rhythmic theta activity of postsynaptic neurons in the target areas.


Assuntos
Córtex Entorrinal/fisiologia , Neurônios GABAérgicos/fisiologia , Hipocampo/fisiologia , Interneurônios/fisiologia , Inibição Neural , Animais , Axônios/fisiologia , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/fisiologia , Giro Denteado/citologia , Giro Denteado/fisiologia , Hipocampo/citologia , Camundongos , Vias Neurais , Técnicas de Patch-Clamp , Somatostatina/metabolismo , Sinapses/fisiologia , Potenciais Sinápticos , Ritmo Teta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA