Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Development ; 151(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38205939

RESUMO

Asymmetric cell divisions often generate daughter cells of unequal size in addition to different fates. In some contexts, daughter cell size asymmetry is thought to be a key input to specific binary cell fate decisions. An alternative possibility is that unequal division is a mechanism by which a variety of cells of different sizes are generated during embryonic development. We show here that two unequal cell divisions precede neuroblast formation in the C lineage of Caenorhabditis elegans. The equalisation of these divisions in a pig-1/MELK mutant background has little effect on neuroblast specification. Instead, we demonstrate that let-19/MDT13 is a regulator of the proneural basic helix-loop-helix transcription factor hlh-14/ASCL1 and find that both are required to concomitantly regulate the acquisition of neuroblast identity and neuroblast cell size. Thus, embryonic neuroblast cell size in this lineage is progressively regulated in parallel with identity by key neural cell fate regulators. We propose that key cell fate determinants have a previously unappreciated function in regulating unequal cleavage, and therefore cell size, of the progenitor cells whose daughter cell fates they then go on to specify.


Assuntos
Proteínas de Caenorhabditis elegans , Células-Tronco Neurais , Animais , Proteínas de Caenorhabditis elegans/genética , Neurônios , Caenorhabditis elegans , Divisão Celular , Tamanho Celular
2.
Nucleic Acids Res ; 51(17): 9183-9202, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37548405

RESUMO

RAD54 family DNA translocases partner with RAD51 recombinases to ensure stable genome inheritance, exhibiting biochemical activities both in promoting recombinase removal and in stabilizing recombinase association with DNA. Understanding how such disparate activities of RAD54 paralogs align with their biological roles is an ongoing challenge. Here we investigate the in vivo functions of Caenorhabditis elegans RAD54 paralogs RAD-54.L and RAD-54.B during meiotic prophase, revealing distinct contributions to the dynamics of RAD-51 association with DNA and to the progression of meiotic double-strand break repair (DSBR). While RAD-54.L is essential for RAD-51 removal from meiotic DSBR sites to enable recombination progression, RAD-54.B is largely dispensable for meiotic DSBR. However, RAD-54.B is required to prevent hyperaccumulation of RAD-51 on unbroken DNA during the meiotic sub-stage when DSBs and early recombination intermediates form. Moreover, DSB-independent hyperaccumulation of RAD-51 foci in the absence of RAD-54.B is RAD-54.L-dependent, revealing a hidden activity of RAD-54.L in promoting promiscuous RAD-51 association that is antagonized by RAD-54.B. We propose a model wherein a division of labor among RAD-54 paralogs allows germ cells to ramp up their capacity for efficient homologous recombination that is crucial to successful meiosis while counteracting potentially deleterious effects of unproductive RAD-51 association with unbroken DNA.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , DNA Helicases , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Transporte/genética , DNA , Reparo do DNA , Células Germinativas/metabolismo , Meiose , Prófase , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , DNA Helicases/metabolismo
3.
Genes Dev ; 31(2): 209-222, 2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-28167500

RESUMO

Programmed cell death occurs in a highly reproducible manner during Caenorhabditis elegans development. We demonstrate that, during embryogenesis, miR-35 and miR-58 bantam family microRNAs (miRNAs) cooperate to prevent the precocious death of mothers of cells programmed to die by repressing the gene egl-1, which encodes a proapoptotic BH3-only protein. In addition, we present evidence that repression of egl-1 is dependent on binding sites for miR-35 and miR-58 family miRNAs within the egl-1 3' untranslated region (UTR), which affect both mRNA copy number and translation. Furthermore, using single-molecule RNA fluorescent in situ hybridization (smRNA FISH), we show that egl-1 is transcribed in the mother of a cell programmed to die and that miR-35 and miR-58 family miRNAs prevent this mother from dying by keeping the copy number of egl-1 mRNA below a critical threshold. Finally, miR-35 and miR-58 family miRNAs can also dampen the transcriptional boost of egl-1 that occurs specifically in a daughter cell that is programmed to die. We propose that miRNAs compensate for lineage-specific differences in egl-1 transcriptional activation, thus ensuring that EGL-1 activity reaches the threshold necessary to trigger death only in daughter cells that are programmed to die.


Assuntos
Apoptose/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/genética , MicroRNAs/metabolismo , Animais , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Linhagem da Célula , Embrião não Mamífero , Regulação da Expressão Gênica no Desenvolvimento , MicroRNAs/genética , Mutação , Fenótipo
4.
Dev Biol ; 447(2): 182-199, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30590018

RESUMO

The four Caenorhabditis species C. elegans, C. briggsae, C. remanei and C. brenneri show more divergence at the genomic level than humans compared to mice (Stein et al., 2003; Cutter et al., 2006, 2008). However, the behavior and anatomy of these nematodes are very similar. We present a detailed analysis of the embryonic development of these species using 4D-microscopic analyses of embryos including lineage analysis, terminal differentiation patterns and bioinformatical quantifications of cell behavior. Further functional experiments support the notion that the early development of all four species depends on identical induction patterns. Based on our results, the embryonic development of all four Caenorhabditis species are nearly identical, suggesting that an apparently optimal program to construct the body plan of nematodes has been conserved for at least 20 million years. This contrasts the levels of divergence between the genomes and the protein orthologs of the Caenorhabditis species, which is comparable to the level of divergence between mouse and human. This indicates an intricate relationship between the structure of genomes and the morphology of animals.


Assuntos
Caenorhabditis , Desenvolvimento Embrionário/fisiologia , Evolução Molecular , Genoma Helmíntico , Filogenia , Animais , Caenorhabditis/embriologia , Caenorhabditis/genética , Humanos , Camundongos , Especificidade da Espécie
5.
PLoS Genet ; 9(10): e1003884, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24204299

RESUMO

The coordination of cell proliferation and cell fate determination is critical during development but the mechanisms through which this is accomplished are unclear. We present evidence that the Snail-related transcription factor CES-1 of Caenorhabditis elegans coordinates these processes in a specific cell lineage. CES-1 can cause loss of cell polarity in the NSM neuroblast. By repressing the transcription of the BH3-only gene egl-1, CES-1 can also suppress apoptosis in the daughters of the NSM neuroblasts. We now demonstrate that CES-1 also affects cell cycle progression in this lineage. Specifically, we found that CES-1 can repress the transcription of the cdc-25.2 gene, which encodes a Cdc25-like phosphatase, thereby enhancing the block in NSM neuroblast division caused by the partial loss of cya-1, which encodes Cyclin A. Our results indicate that CDC-25.2 and CYA-1 control specific cell divisions and that the over-expression of the ces-1 gene leads to incorrect regulation of this functional 'module'. Finally, we provide evidence that dnj-11 MIDA1 not only regulate CES-1 activity in the context of cell polarity and apoptosis but also in the context of cell cycle progression. In mammals, the over-expression of Snail-related genes has been implicated in tumorigenesis. Our findings support the notion that the oncogenic potential of Snail-related transcription factors lies in their capability to, simultaneously, affect cell cycle progression, cell polarity and apoptosis and, hence, the coordination of cell proliferation and cell fate determination.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Ciclo Celular/genética , Diferenciação Celular/genética , Proliferação de Células/genética , Proteínas de Ligação a DNA/genética , Fatores de Transcrição/genética , Animais , Apoptose/genética , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Caenorhabditis elegans/metabolismo , Carcinogênese/genética , Polaridade Celular/genética , Ciclina A/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Mamíferos , Proteínas Repressoras/genética , Fatores de Transcrição/metabolismo , Fosfatases cdc25/genética
6.
Proc Natl Acad Sci U S A ; 110(32): E2967-76, 2013 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-23878239

RESUMO

Mitochondrial morphology changes in response to various stimuli but the significance of this is unclear. In a screen for mutants with abnormal mitochondrial morphology, we identified MMA-1, the Caenorhabditis elegans homolog of the French Canadian Leigh Syndrome protein LRPPRC (leucine-rich pentatricopeptide repeat containing). We demonstrate that reducing mma-1 or LRPPRC function causes mitochondrial hyperfusion. Reducing mma-1/LRPPRC function also decreases the activity of complex IV of the electron transport chain, however without affecting cellular ATP levels. Preventing mitochondrial hyperfusion in mma-1 animals causes larval arrest and embryonic lethality. Furthermore, prolonged LRPPRC knock-down in mammalian cells leads to mitochondrial fragmentation and decreased levels of ATP. These findings indicate that in a mma-1/LRPPRC-deficient background, hyperfusion allows mitochondria to maintain their functions despite a reduction in complex IV activity. Our data reveal an evolutionary conserved mechanism that is triggered by reduced complex IV function and that induces mitochondrial hyperfusion to transiently compensate for a drop in the activity of the electron transport chain.


Assuntos
Caenorhabditis elegans/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas de Neoplasias/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Animais Geneticamente Modificados , Western Blotting , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Doença de Leigh/genética , Doença de Leigh/metabolismo , Doença de Leigh/patologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Microscopia de Fluorescência , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Chaperonas Moleculares , Proteínas de Neoplasias/genética , Interferência de RNA , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
Curr Biol ; 34(10): R504-R507, 2024 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-38772339

RESUMO

Tardigrades withstand ionizing irradiation levels ∼500 times higher than humans can tolerate. Two recent papers shed light on how this might be achieved - via the transcriptional induction of DNA repair genes, the induction of a radioprotective DNA-binding protein, and possibly also the heightened capacity of repair proteins.


Assuntos
Dano ao DNA , Reparo do DNA , Tardígrados , Tardígrados/genética , Tardígrados/fisiologia , Animais , Radiação Ionizante
8.
MicroPubl Biol ; 20222022.
Artigo em Inglês | MEDLINE | ID: mdl-36606081

RESUMO

Visualization of genomic loci with open chromatin state has been reported in mammalian tissue culture cells using a CRISPR/Cas9-based system that utilizes an EGFP-tagged endonuclease-deficient Cas9 protein (dCas9::EGFP) (Chen et al. 2013). Here, we adapted this approach for use in Caenorhabditis elegans . We generated a C. elegans strain that expresses the dCas9 protein fused to two nuclear-localized EGFP molecules (dCas9::NLS::2xEGFP::NLS) in an inducible manner. Using this strain, we report the visualization in live C. elegans embryos of two endogenous repetitive loci, rrn-4 and rrn-1 , from which 5S and 18S ribosomal RNAs are constitutively generated.

9.
Curr Biol ; 29(8): 1324-1336.e6, 2019 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-30982652

RESUMO

Centrosomes, the major microtubule-organizing centers of animal cells, are essential for the assembly of a bipolar spindle during mitosis. Spindle defective-5 (SPD-5), the main scaffold protein of the centrosome matrix in Caenorhabditis elegans, forms a thin core around non-mitotic centrioles. Upon mitotic entry, the SPD-5-containing centrosome matrix expands in a Polo-like-kinase 1 (PLK-1)-dependent manner and this enables an enhanced microtubule nucleation activity during mitosis. How the non-mitotic centrosome core is formed and how this core facilitates robust SPD-5 expansion at mitotic entry remains unknown. Here, we present evidence that the coiled-coil protein pericentriolar matrix deficient-1 (PCMD-1) is necessary for the efficient loading of SPD-5, SPD-2, and PLK-1 to the non-mitotic centrosome core. Furthermore, we demonstrate that the absence of PCMD-1 disrupts pericentriolar material (PCM) recruitment and integrity. The expansion of centrosomes into spherical structures at the mitotic entry is compromised. We propose that PCMD-1 acts as a molecular platform for mitotic regulators and for components of the PCM, thereby allowing functional interactions between them, which in turn is necessary for the organization of the mitotic centrosome and, hence, spindle bipolarity.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiologia , Proteínas de Ciclo Celular/genética , Centrossomo/fisiologia , Mitose , Animais , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/metabolismo , Mitose/fisiologia
10.
Genetics ; 207(2): 447-463, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28827289

RESUMO

Mutants remain a powerful means for dissecting gene function in model organisms such as Caenorhabditis elegans Massively parallel sequencing has simplified the detection of variants after mutagenesis but determining precisely which change is responsible for phenotypic perturbation remains a key step. Genetic mapping paradigms in C. elegans rely on bulk segregant populations produced by crosses with the problematic Hawaiian wild isolate and an excess of redundant information from whole-genome sequencing (WGS). To increase the repertoire of available mutants and to simplify identification of the causal change, we performed WGS on 173 temperature-sensitive (TS) lethal mutants and devised a novel mapping method. The mapping method uses molecular inversion probes (MIP-MAP) in a targeted sequencing approach to genetic mapping, and replaces the Hawaiian strain with a Million Mutation Project strain with high genomic and phenotypic similarity to the laboratory wild-type strain N2 We validated MIP-MAP on a subset of the TS mutants using a competitive selection approach to produce TS candidate mapping intervals with a mean size < 3 Mb. MIP-MAP successfully uses a non-Hawaiian mapping strain and multiplexed libraries are sequenced at a fraction of the cost of WGS mapping approaches. Our mapping results suggest that the collection of TS mutants contains a diverse library of TS alleles for genes essential to development and reproduction. MIP-MAP is a robust method to genetically map mutations in both viable and essential genes and should be adaptable to other organisms. It may also simplify tracking of individual genotypes within population mixtures.


Assuntos
Caenorhabditis elegans/genética , Mapeamento Cromossômico/métodos , Cromossomos/genética , Mutação , Termotolerância/genética , Sequenciamento Completo do Genoma/métodos , Animais , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/genética , Mapeamento Cromossômico/normas , Sequenciamento Completo do Genoma/normas
11.
Genetics ; 202(3): 1071-83, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26773047

RESUMO

Lipids play a pivotal role in embryogenesis as structural components of cellular membranes, as a source of energy, and as signaling molecules. On the basis of a collection of temperature-sensitive embryonic lethal mutants, a systematic database search, and a subsequent microscopic analysis of >300 interference RNA (RNAi)-treated/mutant worms, we identified a couple of evolutionary conserved genes associated with lipid storage in Caenorhabditis elegans embryos. The genes include cpl-1 (cathepsin L-like cysteine protease), ccz-1 (guanine nucleotide exchange factor subunit), and asm-3 (acid sphingomyelinase), which is closely related to the human Niemann-Pick disease-causing gene SMPD1. The respective mutant embryos accumulate enlarged droplets of neutral lipids (cpl-1) and yolk-containing lipid droplets (ccz-1) or have larger genuine lipid droplets (asm-3). The asm-3 mutant embryos additionally showed an enhanced resistance against C band ultraviolet (UV-C) light. Herein we propose that cpl-1, ccz-1, and asm-3 are genes required for the processing of lipid-containing droplets in C. elegans embryos. Owing to the high levels of conservation, the identified genes are also useful in studies of embryonic lipid storage in other organisms.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriologia , Catepsina L/metabolismo , Metabolismo dos Lipídeos/genética , Esfingomielina Fosfodiesterase/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Catepsina L/genética , Desenvolvimento Embrionário , Mutação , Interferência de RNA , Esfingomielina Fosfodiesterase/genética , Proteínas de Transporte Vesicular/genética
12.
G3 (Bethesda) ; 4(5): 795-804, 2014 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-24584095

RESUMO

The development and homeostasis of multicellular animals requires precise coordination of cell division and differentiation. We performed a genome-wide RNA interference screen in Caenorhabditis elegans to reveal the components of a regulatory network that promotes developmentally programmed cell-cycle quiescence. The 107 identified genes are predicted to constitute regulatory networks that are conserved among higher animals because almost half of the genes are represented by clear human orthologs. Using a series of mutant backgrounds to assess their genetic activities, the RNA interference clones displaying similar properties were clustered to establish potential regulatory relationships within the network. This approach uncovered four distinct genetic pathways controlling cell-cycle entry during intestinal organogenesis. The enhanced phenotypes observed for animals carrying compound mutations attest to the collaboration between distinct mechanisms to ensure strict developmental regulation of cell cycles. Moreover, we characterized ubc-25, a gene encoding an E2 ubiquitin-conjugating enzyme whose human ortholog, UBE2Q2, is deregulated in several cancers. Our genetic analyses suggested that ubc-25 acts in a linear pathway with cul-1/Cul1, in parallel to pathways employing cki-1/p27 and lin-35/pRb to promote cell-cycle quiescence. Further investigation of the potential regulatory mechanism demonstrated that ubc-25 activity negatively regulates CYE-1/cyclin E protein abundance in vivo. Together, our results show that the ubc-25-mediated pathway acts within a complex network that integrates the actions of multiple molecular mechanisms to control cell cycles during development.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Ciclo Celular/genética , Redes Reguladoras de Genes , Interferência de RNA , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Estudo de Associação Genômica Ampla , Ubiquitinas/genética , Ubiquitinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA