Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Analyst ; 148(9): 1930-1938, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37066982

RESUMO

The creation of reagentless protein-based biosensors that are capable of monitoring molecular analytes directly in bodily fluids could revolutionize our understanding of biology and personalized health monitoring. The limited number of molecular sensors that are currently available in the market depends on the specific enzymatic or chemical reactivity of their target analytes and therefore are not applicable to many relevant biomarkers. Aiming to overcome this limited molecular sensing generality, a new class of reagentless protein-based electrochemical sensors has been introduced for the direct measurements of biomarkers in unprocessed biological fluids. This mini-review will discuss the most recent cutting-edge discoveries for the development of electroanalytical modular biosensors, where all the sensors' components are integrated into a self-sufficient sensor allowing hence its autonomous functionality.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Proteínas , Biomarcadores
2.
ACS Appl Bio Mater ; 7(6): 4175-4192, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38830774

RESUMO

Nerve growth factor (NGF) plays a crucial role in cellular growth and neurodifferentiation. To achieve significant neuronal regeneration and repair using in vitro NGF delivery, spatiotemporal control that follows the natural neuronal processes must be developed. Notably, a challenge hindering this is the uncontrolled burst release from the growth factor delivery systems. The rapid depletion of NGF reduces treatment efficacy, leading to poor cellular response. To address this, we developed a highly controllable system using graphene oxygen (GO) and GelMA hydrogels modulated by electrical stimulation. Our system showed superior control over the release kinetics, reducing the burst up 30-fold. We demonstrate that the system is also able to sequester and retain NGF up to 10-times more efficiently than GelMA hydrogels alone. Our controlled release system enabled neurodifferentiation, as revealed by gene expression and immunostaining analysis. The increased retention and reduced burst release from our system show a promising pathway for nerve tissue engineering research toward effective regeneration.


Assuntos
Materiais Biocompatíveis , Estimulação Elétrica , Grafite , Hidrogéis , Fator de Crescimento Neural , Regeneração Nervosa , Hidrogéis/química , Hidrogéis/farmacologia , Grafite/química , Grafite/farmacologia , Regeneração Nervosa/efeitos dos fármacos , Fator de Crescimento Neural/farmacologia , Fator de Crescimento Neural/metabolismo , Fator de Crescimento Neural/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Animais , Tamanho da Partícula , Teste de Materiais , Ratos , Células PC12 , Engenharia Tecidual
3.
J Mater Chem B ; 11(3): 581-593, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36533419

RESUMO

The development of electroactive cell-laden hydrogels (bioscaffolds) has gained interest in neural tissue engineering research due to their inherent electrical properties that can induce the regulation of cell behaviour. Hydrogels combined with electrically conducting materials can respond to external applied electric fields, where these stimuli can promote electro-responsive cell growth and proliferation. A successful neural interface for electrical stimulation should present the desired stable electrical properties, such as high conductivity, low impedance, increased charge storage capacity and similar mechanical properties related to a target neural tissue. We report how different electrical stimulation protocols can impact neuronal cells' survival and proliferation when using cell-laden GelMA/GO hydrogels. The rat pheochromocytoma cell line, PC12s encapsulated into hydrogels showed an increased proliferation behaviour with increasing current amplitudes applied. Furthermore, the presence of GO in GelMA hydrogels enhanced the metabolic activity and DNA content of PC12s compared with GelMA alone. Similarly, hydrogels provided survival of encapsulated cells at higher current amplitudes when compared to cells seeded onto ITO flat surfaces, which expressed significant cell death at a current amplitude of 2.50 mA. Our findings provide new rational choices for electroactive hydrogels and electrical stimulation with broad potential applications in neural tissue engineering research.


Assuntos
Hidrogéis , Alicerces Teciduais , Ratos , Animais , Hidrogéis/farmacologia , Sobrevivência Celular , Estimulação Elétrica , Proliferação de Células
4.
Biomater Sci ; 11(15): 5146-5162, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37194340

RESUMO

Neural interfaces are well-established as a tool to understand the behaviour of the nervous system via recording and stimulation of living neurons, as well as serving as neural prostheses. Conventional neural interfaces based on metals and carbon-based materials are generally optimised for high conductivity; however, a mechanical mismatch between the interface and the neural environment can significantly reduce long-term neuromodulation efficacy by causing an inflammatory response. This paper presents a soft composite material made of gelatin methacryloyl (GelMA) containing graphene oxide (GO) conjugated with gold nanorods (AuNRs). The soft hydrogel presents stiffness within the neural environment range of modulus below 5 kPa, while the AuNRs, when exposed to light in the near infrared range, provide a photothermal response that can be used to improve the spatial and temporal precision of neuromodulation. These favourable properties can be maintained at safer optical power levels when combined with electrical stimulation. In this paper we provide mechanical and biological characterization of the optical activity of the GO-AuNR composite hydrogel. The optical functionality of the material has been evaluated via photothermal stimulation of explanted rat retinal tissue. The outcomes achieved with this study encourage further investigation into optical and electrical costimulation parameters for a range of biomedical applications.


Assuntos
Nanotubos , Ratos , Animais , Engenharia Tecidual , Neurônios/fisiologia , Hidrogéis , Ouro
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA