Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
Eur J Immunol ; 50(12): 2025-2040, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33084029

RESUMO

SARS-CoV-2 has emerged as a human pathogen, causing clinical signs, from fever to pneumonia-COVID-19-but may remain mild or asymptomatic. To understand the continuing spread of the virus, to detect those who are and were infected, and to follow the immune response longitudinally, reliable and robust assays for SARS-CoV-2 detection and immunological monitoring are needed. We quantified IgM, IgG, and IgA antibodies recognizing the SARS-CoV-2 receptor-binding domain (RBD) or the Spike (S) protein over a period of 6 months following COVID-19 onset. We report the detailed setup to monitor the humoral immune response from over 300 COVID-19 hospital patients and healthcare workers, 2500 University staff, and 198 post-COVID-19 volunteers. Anti-SARS-CoV-2 antibody responses follow a classic pattern with a rapid increase within the first three weeks after symptoms. Although titres reduce subsequently, the ability to detect anti-SARS-CoV-2 IgG antibodies remained robust with confirmed neutralization activity for up to 6 months in a large proportion of previously virus-positive screened subjects. Our work provides detailed information for the assays used, facilitating further and longitudinal analysis of protective immunity to SARS-CoV-2. Importantly, it highlights a continued level of circulating neutralising antibodies in most people with confirmed SARS-CoV-2.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , COVID-19/epidemiologia , Feminino , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Soroepidemiológicos , Fatores de Tempo
2.
PLoS Pathog ; 15(11): e1008145, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31703103

RESUMO

Sleeping sickness and malaria are parasitic diseases with overlapping geographical distributions in sub-Saharan Africa. We hypothesized that the immune response elicited by an infection with Trypanosoma brucei, the etiological agent of sleeping sickness, would inhibit a subsequent infection by Plasmodium, the malaria parasite, decreasing the severity of its associated pathology. To investigate this, we established a new co-infection model in which mice were initially infected with T. brucei, followed by administration of P. berghei sporozoites. We observed that a primary infection by T. brucei significantly attenuates a subsequent infection by the malaria parasite, protecting mice from experimental cerebral malaria and prolonging host survival. We further observed that an ongoing T. brucei infection leads to an accumulation of lymphocyte-derived IFN-γ in the liver, limiting the establishment of a subsequent hepatic infection by P. berghei sporozoites. Thus, we identified a novel host-mediated interaction between two parasitic infections, which may be epidemiologically relevant in regions of Trypanosoma/Plasmodium co-endemicity.


Assuntos
Antivirais/farmacologia , Coinfecção/tratamento farmacológico , Fígado/efeitos dos fármacos , Malária Cerebral/prevenção & controle , Plasmodium berghei/fisiologia , Trypanosoma brucei brucei/isolamento & purificação , Tripanossomíase Africana/complicações , Animais , Coinfecção/epidemiologia , Coinfecção/parasitologia , Interferon gama/farmacologia , Fígado/imunologia , Fígado/parasitologia , Malária Cerebral/epidemiologia , Malária Cerebral/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Tripanossomíase Africana/parasitologia
3.
J Theor Biol ; 484: 110030, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31568789

RESUMO

We introduce an agent-based model describing a susceptible-infectious-susceptible (SIS) system of humans and mosquitoes to predict malaria epidemiological scenarios in realistic biological conditions. Emphasis is given to the transition from endemic behavior to eradication of malaria transmission induced by combined drug therapies acting on both the gametocytemia reduction and on the selective mosquito mortality during parasite development in the mosquito. Our mathematical framework enables to uncover the critical values of the parameters characterizing the effect of each drug therapy. Moreover, our results provide quantitative evidence of what was up to now only partially assumed with empirical support: interventions combining gametocytemia reduction through the use of gametocidal drugs, with the selective action of ivermectin during parasite development in the mosquito, may actively promote disease eradication in the long run. In the agent model, the main properties of human-mosquito interactions are implemented as parameters and the model is validated by comparing simulations with real data of malaria incidence collected in the endemic malaria region of Chimoio in Mozambique. Finally, we discuss our findings in light of current drug administration strategies for malaria prevention, which may interfere with human-to-mosquito transmission process.


Assuntos
Antimaláricos , Quimioterapia Combinada , Malária , Modelos Teóricos , Animais , Antimaláricos/administração & dosagem , Culicidae/parasitologia , Erradicação de Doenças , Doenças Endêmicas/prevenção & controle , Interações Hospedeiro-Parasita , Humanos , Malária/tratamento farmacológico , Malária/epidemiologia , Malária/prevenção & controle
4.
Artigo em Inglês | MEDLINE | ID: mdl-28348156

RESUMO

The sporogonic stage of the life cycle of Plasmodium spp., the causative agents of malaria, occurs inside the parasite's mosquito vector, where a process of fertilization, meiosis, and mitotic divisions culminates in the generation of large numbers of mammalian-infective sporozoites. Efforts to cultivate Plasmodium mosquito stages in vitro have proved challenging and yielded only moderate success. Here, we describe a methodology that simplifies the in vitro screening of much-needed transmission-blocking (TB) compounds employing a bioluminescence-based method to monitor the in vitro development of sporogonic stages of the rodent malaria parasite Plasmodium berghei Our proof-of-principle assessment of the in vitro TB activity of several commonly used antimalarial compounds identified cycloheximide, thiostrepton, and atovaquone as the most active compounds against the parasite's sporogonic stages. The TB activity of these compounds was further confirmed by in vivo studies that validated our newly developed in vitro approach to TB compound screening.


Assuntos
Antimaláricos/farmacologia , Malária/transmissão , Plasmodium berghei/efeitos dos fármacos , Animais , Anopheles/efeitos dos fármacos , Antimaláricos/uso terapêutico , Drosophila , Proteínas de Drosophila/metabolismo , Insetos Vetores/efeitos dos fármacos , Malária/tratamento farmacológico , Esporozoítos/efeitos dos fármacos
5.
Artigo em Inglês | MEDLINE | ID: mdl-27895022

RESUMO

Avermectins are powerful endectocides with an established potential to reduce the incidence of vector-borne diseases. Here, we show that several avermectins inhibit the hepatic stage of Plasmodium infection in vitro Notably, ivermectin potently inhibits liver infection in vivo by impairing parasite development inside hepatocytes. This impairment has a clear impact on the ensuing blood stage parasitemia, reducing disease severity and enhancing host survival. Ivermectin has been proposed as a tool to control malaria transmission because of its effects on the mosquito vector. Our study extends the effect of ivermectin to the early stages of mammalian host infection and supports the inclusion of this multipurpose drug in malaria control strategies.


Assuntos
Ivermectina/análogos & derivados , Ivermectina/uso terapêutico , Fígado/parasitologia , Malária/tratamento farmacológico , Plasmodium/efeitos dos fármacos , Plasmodium/patogenicidade , Animais , Linhagem Celular Tumoral , Culicidae , Humanos
6.
J Immunol ; 194(10): 4860-70, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25862814

RESUMO

Cerebral malaria is one of the most severe complications of malaria disease, attributed to a complicated series of immune reactions in the host. The syndrome is marked by inflammatory immune responses, margination of leukocytes, and parasitized erythrocytes in cerebral vessels leading to breakdown of the blood-brain barrier. We show that chemical attenuation of the parasite at the very early, clinically silent liver stage suppresses parasite development, delays the time until parasites establish blood-stage infection, and provokes an altered host immune response, modifying immunopathogenesis and protecting from cerebral disease. The early response is proinflammatory and cell mediated, with increased T cell activation in the liver and spleen, and greater numbers of effector T cells, cytokine-secreting T cells, and proliferating, proinflammatory cytokine-producing T cells. Dendritic cell numbers, T cell activation, and infiltration of CD8(+) T cells to the brain are decreased later in infection, possibly mediated by the anti-inflammatory cytokine IL-10. Strikingly, protection can be transferred to naive animals by adoptive transfer of lymphocytes from the spleen at very early times of infection. Our data suggest that a subpopulation belonging to CD8(+) T cells as early as day 2 postinfection is responsible for protection. These data indicate that liver stage-directed early immune responses can moderate the overall downstream host immune response and modulate severe malaria outcome.


Assuntos
Fígado/imunologia , Fígado/virologia , Malária/imunologia , Malária/patologia , Aminoquinolinas/farmacologia , Animais , Antivirais/farmacologia , Modelos Animais de Doenças , Progressão da Doença , Citometria de Fluxo , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Plasmodium berghei , Reação em Cadeia da Polimerase em Tempo Real
7.
Vaccine ; 41(51): 7618-7625, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38007342

RESUMO

Long-term protection against malaria remains one of the greatest challenges of vaccination against this deadly parasitic disease. Whole-sporozoite (WSp) malaria vaccine formulations, which target the Plasmodium parasite's pre-erythrocytic stages, include radiation-attenuated sporozoites (RAS), early- and late-arresting genetically-attenuated parasites (EA-GAP and LA-GAP, respectively), and chemoprophylaxis with sporozoites (CPS). Although all these four vaccine formulations induce protective immune responses in the clinic, data on the longevity of the antimalarial protection they afford remain scarce. We employed a mouse model of malaria to assess protection conferred by immunization with P. berghei (Pb)-based surrogates of these four WSp formulations over a 36-week period. We show that EA-GAP WSp provide the lowest overall protection against an infectious Pb challenge, and that while immunization with RAS and LA-GAP WSp elicits the most durable protection, the protective efficacy of CPS WSp wanes rapidly over the 36-week period, most notably at higher immunization dosages. Analyses of liver immune cells show that CD44hi CD8+ T cells in CPS WSp-immunized mice express increased levels of the co-inhibitory PD-1 and LAG-3 markers compared to mice immunized with the other WSp formulations. This indicates that memory CD8+ T cells elicited by CPS WSp immunization display a more exhausted phenotype, which may explain the rapid waning of protection conferred by the former. These results emphasize the need for a detailed comparison of the duration of protection of different WSp formulations in humans and suggest a more beneficial effect of RAS and LA-GAP WSp compared to EA-GAP or CSP WSp.


Assuntos
Vacinas Antimaláricas , Malária , Humanos , Animais , Camundongos , Plasmodium berghei/genética , Esporozoítos , Vacinas Atenuadas , Linfócitos T CD8-Positivos , Chumbo
8.
NPJ Vaccines ; 8(1): 182, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-37996533

RESUMO

Immunization with Plasmodium sporozoites, either attenuated or administered under the cover of an antimalarial drug, can induce strong protection against malaria in pre-clinical murine models, as well as in human trials. Previous studies have suggested that whole-sporozoite (WSpz) formulations based on parasites with longer liver stage development induce higher protection, but a comparative analysis of four different WSpz formulations has not been reported. We employed a rodent model of malaria to analyze the effect of immunization dosage on the protective efficacy of WSpz formulations consisting of (i) early liver arresting genetically attenuated parasites (EA-GAP) or (ii) radiation-attenuated sporozoites (RAS), (iii) late arresting GAP (LA-GAP), and (iv) sporozoites administered under chemoprophylaxis, that are eliminated upon release into the bloodstream (CPS). Our results show that, unlike all other WSpz formulations, EA-GAP fails to confer complete protection against an infectious challenge at any immunization dosage employed, suggesting that a minimum threshold of liver development is required to elicit fully effective immune responses. Moreover, while immunization with RAS, LA-GAP and CPS WSpz yields comparable, dosage-dependent protection, protection by EA-GAP WSpz peaks at an intermediate dosage and markedly decreases thereafter. In-depth immunological analyses suggest that effector CD8+ T cells elicited by EA-GAP WSpz immunization have limited developmental plasticity, with a potential negative impact on the functional versatility of memory cells and, thus, on protective immunity. Our findings point towards dismissing EA-GAP from prioritization for WSpz malaria vaccination and enhance our understanding of the complexity of the protection elicited by these WSpz vaccine candidates, guiding their future optimization.

9.
BMC Evol Biol ; 12: 69, 2012 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-22607633

RESUMO

BACKGROUND: In a number of organisms sex-biased genes are non-randomly distributed between autosomes and the shared sex chromosome X (or Z). Studies on Anopheles gambiae have produced conflicting results regarding the underrepresentation of male-biased genes on the X chromosome and it is unclear to what extent sexual antagonism, dosage compensation or X-inactivation in the male germline, the evolutionary forces that have been suggested to affect the chromosomal distribution of sex-biased genes, are operational in Anopheles. RESULTS: We performed a meta-analysis of sex-biased gene expression in Anopheles gambiae which provides evidence for a general underrepresentation of male-biased genes on the X-chromosome that increased in significance with the observed degree of sex-bias. A phylogenomic comparison between Drosophila melanogaster, Aedes aegypti and Culex quinquefasciatus also indicates that the Anopheles X chromosome strongly disfavours the evolutionary conservation of male-biased expression and that novel male-biased genes are more likely to arise on autosomes. Finally, we demonstrate experimentally that transgenes situated on the Anopheles gambiae X chromosome are transcriptionally silenced in the male germline. CONCLUSION: The data presented here support the hypothesis that the observed demasculinization of the Anopheles X chromosome is driven by X-chromosome inactivation in the male germline and by sexual antagonism. The demasculinization appears to be the consequence of a loss of male-biased expression, rather than a failure in the establishment or the extinction of male-biased genes.


Assuntos
Anopheles/genética , Evolução Molecular , Inativação do Cromossomo X , Cromossomo X/genética , Animais , Culex/genética , Drosophila melanogaster/genética , Feminino , Perfilação da Expressão Gênica , Inativação Gênica , Genes de Insetos , Genômica , Células Germinativas/metabolismo , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Filogenia , Transgenes
10.
Res Social Adm Pharm ; 18(8): 3463-3465, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35027305

RESUMO

The lack of commonly agreed terminology in pharmacy field is highly prevalent and may have influence on the relevance and robustness of the area, especially how others see pharmacy literature. Potential consequences of this poor perception of pharmacy field by the National Library of Medicine (NLM) could be the omission of several pharmacy-related Medical Subject Headings (MeSH) or the low indexing rate of pharmacy practice journals in MEDLINE. Journal name abbreviation, under the responsibility of the NLM, is the unambiguous way to identify a journal in bibliographic references and catalogs. The present study investigated the consistency of pharmacy journal abbreviations in the NLM Catalog. For the 290 journals containing any word with the root pharm in their names, a consistent procedure for NLM title abbreviations was found for 27 of the words in journal names but not for the abbreviation "Pharm", which represented several words with very different meanings: pharmaceutical, pharmaceutics, pharmacists, and pharmacy. The use by the NLM of different abbreviation for pharmaceutical and pharmaceutics would increase journal identification clarity.


Assuntos
Abreviaturas como Assunto , Publicações Periódicas como Assunto , Farmácia , Humanos , MEDLINE , Medical Subject Headings , Terminologia como Assunto
11.
FEBS J ; 289(12): 3335-3359, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-33993649

RESUMO

In the last few decades, considerable efforts have been made toward the development of efficient vaccines against malaria. Whole-sporozoite (Wsp) vaccines, which induce efficient immune responses against the pre-erythrocytic (PE) stages (sporozoites and liver forms) of Plasmodium parasites, the causative agents of malaria, are among the most promising immunization strategies tested until present. Several Wsp PE vaccination approaches are currently under evaluation in the clinic, including radiation- or genetically-attenuated Plasmodium sporozoites, live parasites combined with chemoprophylaxis, or genetically modified rodent Plasmodium parasites. In addition to the assessment of their protective efficacy, clinical trials of Wsp PE vaccine candidates inevitably involve the thorough investigation of the immune responses elicited by vaccination, as well as the identification of correlates of protection. Here, we review the main methodologies employed to dissect the humoral and cellular immune responses observed in the context of Wsp PE vaccine clinical trials and discuss future strategies to further deepen the knowledge generated by these studies, providing a toolbox for the in-depth analysis of vaccine-induced immunogenicity.


Assuntos
Vacinas Antimaláricas , Malária , Plasmodium , Animais , Imunidade Celular , Malária/prevenção & controle , Vacinas Antimaláricas/uso terapêutico , Plasmodium falciparum , Esporozoítos
12.
Front Immunol ; 13: 869757, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35529859

RESUMO

Malaria remains one of the world's most prevalent infectious diseases. Several vaccination strategies currently under investigation aim at hampering the development of the Plasmodium parasite during the clinically silent liver stage of its life cycle in the mammalian host, preventing the subsequent disease-associated blood stage of infection. Immunization with radiation-attenuated sporozoites (RAS), the liver-infecting parasite forms, can induce sterile protection against malaria. However, the efficacy of vaccine candidates in malaria-naïve individuals in high-income countries is frequently higher than that found in populations where malaria is endemic. Malnutrition has been associated with immune dysfunction and with a delay or impairment of the immune response to some vaccines. Since vaccine efficacy depends on the generation of competent immune responses, and malaria-endemic regions are often associated with malnutrition, we hypothesized that an inadequate host nutritional status, specifically resulting from a reduction in dietary protein, could impact on the establishment of an efficient anti-malarial immune response. We developed a model of RAS immunization under low protein diet to investigate the impact of a reduced host protein intake on the immunogenicity and protective efficacy of this vaccine. Our analysis of the circulating and tissue-associated immune compartments revealed that a reduction in dietary protein intake during immunization resulted in a decrease in the frequency of circulating CD4+ T cells and of hepatic NK cells. Nevertheless, the profile of CD8+ T cells in the blood, liver and spleen was robust and minimally affected by the dietary protein content during RAS immunization, as assessed by supervised and in-depth unsupervised X-shift clustering analysis. Although mice immunized under low protein diet presented higher parasite liver load upon challenge than those immunized under adequate protein intake, the two groups displayed similar levels of protection from disease. Overall, our data indicate that dietary protein reduction may have minimal impact on the immunogenicity and efficacy of RAS-based malaria vaccination. Importantly, this experimental model can be extended to assess the impact of other nutrient imbalances and immunization strategies, towards the refinement of future translational interventions that improve vaccine efficacy in malnourished individuals.


Assuntos
Vacinas Antimaláricas , Malária , Desnutrição , Animais , Dieta com Restrição de Proteínas , Proteínas Alimentares , Mamíferos , Camundongos , Esporozoítos , Vacinação/métodos , Vacinas Atenuadas
13.
Explor Res Clin Soc Pharm ; 7: 100172, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36082143

RESUMO

Background: Medical Subject Headings (MeSH) thesaurus contribute towards efficient searching of biomedical information. However, insufficient coverage of specific fields and inaccuracies in the indexing of articles can lead to bias during literature retrieval. Objectives: This meta-research study aimed to assess the use of 'Pharmaceutical Services' MeSH terms in studies evaluating the effect of pharmacists' interventions. Methods: An updated systematic search (Jan-2022) to gather meta-analyses comparing pharmacists' interventions vs. other forms of care was performed. All MeSH terms allocated to the MEDLINE record of each primary study included in the selected meta-analyses were systematically extracted. Terms from the 'Pharmaceutical Services' branch, including its descendants, as well as other 26 pharmacy-specific MeSH terms were identified. The assignment of these terms as a 'Major MeSH' was also evaluated. Descriptive statistics and social network analyses to evaluate the co-occurrence of the MeSH terms in the articles were conducted. Sensitivity analyses including only meta-analyses with declared objectives mentioning the words 'pharmacist' or 'pharmacy' were performed (SPSS v.24.0). Results: Overall, 138 meta-analyses including 2012 primary articles were evaluated. A median of 15 [IQR 12-18] MeSH terms were assigned per article with a slight positive time-trend (Spearman rho = 0.193; p < 0.001). Only 36.6% (n = 736/2012) and 58.1% (n = 338/1099) of studies were indexed with one MeSH term from the 'Pharmaceutical Services' branch in the overall and sensitivity analyses, respectively. In <20% of cases, these terms were a 'Major MeSH'. The pharmacy-specific term 'Pharmacists' was the most frequently used, yet in only 27.8% and 47.7% of articles in the original and sensitivity analyses, respectively. Social networks showed a weak association between pharmacy-specific and 'Pharmaceutical services' branch MeSH terms. Conclusions: The availability of a 'Pharmaceutical services' branch hierarchic tree and further pharmacy-specific MeSH terms incorporated to the MeSH thesaurus in the past years is not related with accurate indexing of articles.

14.
Braz J Cardiovasc Surg ; 37(3): 356-369, 2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35605217

RESUMO

INTRODUCTION: Oral anticoagulants are the treatment of choice for diverse types of coagulation disorders. Warfarin is widely used by the Brazilian population, possibly due to its lower cost than other oral anticoagulants. However, it has a high risk of serious adverse effects if used incorrectly. The Anticoagulation Knowledge Tool (AKT) can assess a patient's knowledge about her/his oral anticoagulant therapy and can assist health professionals in identifying patients with difficulties in adherence. This study aimed to translate, culturally adapt, and validate the AKT into Brazilian Portuguese. METHODS: After a standard forward-backward procedure to translate the AKT into Brazilian Portuguese (AKT-Br), a version of the instrument was applied in three groups (patients, pharmacists, and the general population). The reliability of the AKT-Br was tested using an internal consistency measure and test-retest. The validity of the instrument was confirmed with data from the contrasted groups. All statistical analyses were performed with RStudio. RESULTS: The median scores obtained with the AKT-Br were 29.0, 17.0, and 7.5 for pharmacists, patients, and the general population, respectively (maximum score of 35 points). There was moderate internal consistency for the instrument and test-retest reliability was satisfactory. Analysis of variance for validity of the groups revealed a significant relationship between the total score and the evaluated groups. CONCLUSION: The ATK-Br is a reliable and valid tool to assess knowledge about oral anticoagulants. AKT-Br can be used in clinical practice as an auxiliary tool to improve patient care through personalised educational interventions.


Assuntos
Comparação Transcultural , Proteínas Proto-Oncogênicas c-akt , Anticoagulantes/uso terapêutico , Brasil , Feminino , Humanos , Psicometria/métodos , Reprodutibilidade dos Testes , Inquéritos e Questionários
15.
NPJ Vaccines ; 7(1): 163, 2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36526627

RESUMO

Two malaria parasite species, Plasmodium falciparum (Pf) and P. vivax (Pv) are responsible for most of the disease burden caused by malaria. Vaccine development against this disease has focused mainly on Pf. Whole-sporozoite (WSp) vaccination, targeting pre-erythrocytic (PE) parasite stages, is a promising strategy for immunization against malaria and several PfWSp-based vaccine candidates are currently undergoing clinical evaluation. In contrast, no WSp candidates have been developed for Pv, mainly due to constraints in the production of Pv sporozoites in the laboratory. Recently, we developed a novel approach for WSp vaccination against Pf based on the use of transgenic rodent P. berghei (Pb) sporozoites expressing immunogens of this human-infective parasite. We showed that this platform can be used to deliver PE Pf antigens, eliciting both targeted humoral responses and cross-species cellular immune responses against Pf. Here we explored this WSp platform for the delivery of Pv antigens. As the Pv circumsporozoite protein (CSP) is a leading vaccine candidate antigen, we generated a transgenic Pb parasite, PbviVac, that, in addition to its endogenous PbCSP, expresses PvCSP under the control of a strictly PE promoter. Immunofluorescence microscopy analyses confirmed that both the PbCSP and the PvCSP antigens are expressed in PbviVac sporozoites and liver stages and that PbviVac sporozoite infectivity of hepatic cells is similar to that of its wild-type Pb counterpart. Immunization of mice with PbviVac sporozoites elicits the production of anti-PvCSP antibodies that efficiently recognize and bind to Pv sporozoites. Our results warrant further development and evaluation of PbviVac as a surrogate for WSp vaccination against Pv malaria.

16.
NPJ Vaccines ; 7(1): 139, 2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36333336

RESUMO

Whole-sporozoite (WSp) malaria vaccines induce protective immune responses in animal malaria models and in humans. A recent clinical trial with a WSp vaccine comprising genetically attenuated parasites (GAP) which arrest growth early in the liver (PfSPZ-GA1), showed that GAPs can be safely administered to humans and immunogenicity is comparable to radiation-attenuated PfSPZ Vaccine. GAPs that arrest late in the liver stage (LA-GAP) have potential for increased potency as shown in rodent malaria models. Here we describe the generation of four putative P. falciparum LA-GAPs, generated by CRISPR/Cas9-mediated gene deletion. One out of four gene-deletion mutants produced sporozoites in sufficient numbers for further preclinical evaluation. This mutant, PfΔmei2, lacking the mei2-like RNA gene, showed late liver growth arrest in human liver-chimeric mice with human erythrocytes, absence of unwanted genetic alterations and sensitivity to antimalarial drugs. These features of PfΔmei2 make it a promising vaccine candidate, supporting further clinical evaluation. PfΔmei2 (GA2) has passed regulatory approval for safety and efficacy testing in humans based on the findings reported in this study.

17.
Infect Immun ; 79(11): 4708-15, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21844236

RESUMO

Malaria remains a devastating disease despite efforts at control and prevention. Extensive studies using mostly rodent infection models reveal that successful Plasmodium parasite transmission by the African mosquito vector Anopheles gambiae depends on finely tuned vector-parasite interactions. Here we investigate the transcriptional response of A. gambiae to geographically related Plasmodium falciparum populations at various infection intensities and different infection stages. These responses are compared with those of mosquitoes infected with the rodent parasite Plasmodium berghei. We demonstrate that mosquito responses are largely dependent on the intensity of infection. A major transcriptional suppression of genes involved in the regulation of midgut homeostasis is detected in low-intensity P. falciparum infections, the most common type of infection in Africa. Importantly, genes transcriptionally induced during these infections tend to be phylogenetically unique to A. gambiae. These data suggest that coadaptation between vectors and parasites may act to minimize the impact of infection on mosquito fitness by selectively suppressing specific functional classes of genes. RNA interference (RNAi)-mediated gene silencing provides initial evidence for important roles of the mosquito G protein-coupled receptors (GPCRs) in controlling infection intensity-dependent antiparasitic responses.


Assuntos
Anopheles/imunologia , Anopheles/parasitologia , Insetos Vetores/imunologia , Insetos Vetores/parasitologia , Plasmodium falciparum/fisiologia , Animais , Anopheles/genética , Anopheles/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Interações Hospedeiro-Parasita , Humanos , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Insetos Vetores/genética , Insetos Vetores/metabolismo , Camundongos , Filogenia , Plasmodium berghei/fisiologia
18.
PLoS One ; 16(6): e0253713, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34185802

RESUMO

BACKGROUND: Scholarly publishing system relies on external peer review. However, the duration of publication process is a major concern for authors and funding bodies. OBJECTIVE: To evaluate the duration of the publication process in pharmacy practice journals compared with other biomedical journals indexed in PubMed. METHODS: All the articles published from 2009 to 2018 by the 33 pharmacy practice journals identified in Mendes et al. study and indexed in PubMed were gathered as study group. A comparison group was created through a random selection of 3000 PubMed PMIDs for each year of study period. Articles with publication dates outside the study period were excluded. Metadata of both groups of articles were imported from PubMed. The duration of editorial process was calculated with three periods: acceptance lag (days between 'submission date' and 'acceptance date'), lead lag (days between 'acceptance date' and 'online publication date'), and indexing lag (days between 'online publication date' and 'Entry date'). Null hypothesis significance tests and effect size measures were used to compare these periods between both groups. RESULTS: The 33 pharmacy practice journals published 26,256 articles between 2009 and 2018. Comparison group random selection process resulted in a pool of 23,803 articles published in 5,622 different journals. Acceptance lag was 105 days (IQR 57-173) for pharmacy practice journals and 97 days (IQR 56-155) for the comparison group with a null effect difference (Cohen's d 0.081). Lead lag was 13 (IQR 6-35) and 23 days (IQR 9-45) for pharmacy practice and comparison journals, respectively, which resulted in a small effect. Indexing lag was 5 days (IQR 2-46) and 4 days (IQR 2-12) for pharmacy practice and control journals, which also resulted in a small effect. Slight positive time trend was found in pharmacy practice acceptance lag, while slight negative trends were found for lead and indexing lags for both groups. CONCLUSIONS: Publication process duration of pharmacy practice journals is similar to a general random sample of articles from all disciplines.


Assuntos
Publicações Periódicas como Assunto , Farmácia , Comunicação Acadêmica , Humanos
19.
BMC Genomics ; 11: 566, 2010 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-20946652

RESUMO

BACKGROUND: The Anopheles gambiae salivary glands play a major role in malaria transmission and express a variety of bioactive components that facilitate blood-feeding by preventing platelet aggregation, blood clotting, vasodilatation, and inflammatory and other reactions at the probing site on the vertebrate host. RESULTS: We have performed a global transcriptome analysis of the A. gambiae salivary gland response to blood-feeding, to identify candidate genes that are involved in hematophagy. A total of 4,978 genes were found to be transcribed in this tissue. A comparison of salivary gland transcriptomes prior to and after blood-feeding identified 52 and 41 transcripts that were significantly up-regulated and down-regulated, respectively. Ten genes were further selected to assess their role in the blood-feeding process using RNAi-mediated gene silencing methodology. Depletion of the salivary gland genes encoding D7L2, anophelin, peroxidase, the SG2 precursor, and a 5'nucleotidase gene significantly increased probing time of A. gambiae mosquitoes and thereby their capacity to blood-feed. CONCLUSIONS: The salivary gland transcriptome comprises approximately 38% of the total mosquito transcriptome and a small proportion of it is dynamically changing already at two hours in response to blood feeding. A better understanding of the salivary gland transcriptome and its function can contribute to the development of pathogen transmission control strategies and the identification of medically relevant bioactive compounds.


Assuntos
Anopheles/genética , Anopheles/metabolismo , Comportamento Alimentar , Perfilação da Expressão Gênica , Glândulas Salivares/metabolismo , Animais , Anopheles/enzimologia , Anopheles/imunologia , Comportamento Animal , Metabolismo dos Carboidratos/genética , Ritmo Circadiano/genética , Citoesqueleto/genética , Digestão/genética , Feminino , Regulação da Expressão Gênica , Genes de Insetos/genética , Imunidade/genética , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Estresse Fisiológico/genética
20.
PLoS Pathog ; 4(5): e1000069, 2008 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-18483558

RESUMO

In much of sub-Saharan Africa, the mosquito Anopheles gambiae is the main vector of the major human malaria parasite, Plasmodium falciparum. Convenient laboratory studies have identified mosquito genes that affect positively or negatively the developmental cycle of the model rodent parasite, P. berghei. Here, we use transcription profiling and reverse genetics to explore whether five disparate mosquito gene regulators of P. berghei development are also pertinent to A. gambiae/P. falciparum interactions in semi-natural conditions, using field isolates of this parasite and geographically related mosquitoes. We detected broadly similar albeit not identical transcriptional responses of these genes to the two parasite species. Gene silencing established that two genes affect similarly both parasites: infections are hindered by the intracellular local activator of actin cytoskeleton dynamics, WASP, but promoted by the hemolymph lipid transporter, ApoII/I. Since P. berghei is not a natural parasite of A. gambiae, these data suggest that the effects of these genes have not been drastically altered by constant interaction and co-evolution of A. gambiae and P. falciparum; this conclusion allowed us to investigate further the mode of action of these two genes in the laboratory model system using a suite of genetic tools and infection assays. We showed that both genes act at the level of midgut invasion during the parasite's developmental transition from ookinete to oocyst. ApoII/I also affects the early stages of oocyst development. These are the first mosquito genes whose significant effects on P. falciparum field isolates have been established by direct experimentation. Importantly, they validate for semi-field human malaria transmission the concept of parasite antagonists and agonists.


Assuntos
Anopheles/parasitologia , Vetores de Doenças , Malária Falciparum/parasitologia , Plasmodium berghei/fisiologia , Plasmodium falciparum/fisiologia , Animais , Apolipoproteína A-I/genética , Apolipoproteína A-I/metabolismo , Apolipoproteína A-II/genética , Apolipoproteína A-II/metabolismo , Criança , Pré-Escolar , DNA de Protozoário/análise , Sistema Digestório/parasitologia , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Inativação Gênica , Predisposição Genética para Doença , Interações Hospedeiro-Parasita , Humanos , Malária Falciparum/sangue , Malária Falciparum/transmissão , Oocistos/fisiologia , Plasmodium berghei/patogenicidade , Plasmodium falciparum/patogenicidade , Polimorfismo de Nucleotídeo Único , Transcrição Gênica , Proteína da Síndrome de Wiskott-Aldrich/genética , Proteína da Síndrome de Wiskott-Aldrich/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA