Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Appl Environ Microbiol ; : e0030924, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874336

RESUMO

In the last decade, advances in soil bacterial ecology have contributed to increasing agricultural production. Brazil is the world leading agriculture producer and leading soil biodiversity reservoir. Meanwhile, there is still a significant gap in the knowledge regarding the soil microscopic life and its interactions with agricultural practices, and the replacement of natural vegetation by agroecosystems is yet to be unfolded. Through high throughput DNA sequencing, scientists are now exploring the complexity of soil bacterial communities and their relationship with soil and environmental characteristics. This study aimed to investigate the progress of bacterial ecology studies in Brazil over the last 10 years, seeking to understand the effect of the conversion of natural vegetation in agricultural systems on the diversity and structure of the soil microbial communities. We conducted a systematic search for scientific publication databases. Our systematic search has matched 62 scientific articles from three different databases. Most of the studies were placed in southeastern and northern Brazil, with no records of studies about microbial ecology in 17 out of 27 Brazilian states. Out of the 26 studies that examined the effects of replacing natural vegetation with agroecosystems, most authors concluded that changes in soil pH and vegetation cover replacement were the primary drivers of shifts in microbial communities. Understanding the ecology of the bacteria inhabiting Brazilian soils in agroecosystems is paramount for developing more efficient soil management strategies and cleaner agricultural technologies.

2.
J Environ Manage ; 351: 119746, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38071918

RESUMO

Land desertification poses a significant challenge in the Brazilian semiarid region, encompassing a substantial portion of the country. Within this region, the detrimental effects of human activities, particularly unsuitable anthropic actions, have resulted in diminished vegetation cover and an accelerated rate of soil erosion. Notably, practices such as overgrazing and the conversion of native forests into pasturelands have played a pivotal role in exacerbating the process of land desertification. Ultimately, land desertification results in significant losses of soil organic matter and microbial diversity. To address this pressing issue and contribute to the existing literature, various land restoration practices, such as grazing exclusion, cover crops, and terracing, have been implemented in the Brazilian semiarid. These practices have shown promising results in terms of enhancing soil fertility and restoring microbial properties. Nonetheless, their effectiveness in improving soil microbial properties in the Brazilian semiarid region remains a subject of ongoing study. Recent advances in molecular techniques have improved our understanding of microbial communities in lands undergoing desertification and restoration. In this review, we focus on assessing the effectiveness of these restoration practices in revitalizing soil microbial properties, with a particular emphasis on the soil microbiome and its functions. Through a critical assessment of the impact of these practices on soil microbial properties, our research aims to provide valuable insights that can help mitigate the adverse effects of desertification and promote sustainable development in this ecologically sensitive region.


Assuntos
Conservação dos Recursos Naturais , Solo , Humanos , Microbiologia do Solo , Brasil , Florestas , China
3.
Mol Ecol ; 32(12): 3257-3275, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36896778

RESUMO

Deforestation threatens the integrity of the Amazon biome and the ecosystem services it provides, including greenhouse gas mitigation. Forest-to-pasture conversion has been shown to alter the flux of methane gas (CH4 ) in Amazonian soils, driving a switch from acting as a sink to a source of atmospheric CH4 . This study aimed to better understand this phenomenon by investigating soil microbial metagenomes, focusing on the taxonomic and functional structure of methane-cycling communities. Metagenomic data from forest and pasture soils were combined with measurements of in situ CH4 fluxes and soil edaphic factors and analysed using multivariate statistical approaches. We found a significantly higher abundance and diversity of methanogens in pasture soils. As inferred by co-occurrence networks, these microorganisms seem to be less interconnected within the soil microbiota in pasture soils. Metabolic traits were also different between land uses, with increased hydrogenotrophic and methylotrophic pathways of methanogenesis in pasture soils. Land-use change also induced shifts in taxonomic and functional traits of methanotrophs, with bacteria harbouring genes encoding the soluble form of methane monooxygenase enzyme (sMMO) depleted in pasture soils. Redundancy analysis and multimodel inference revealed that the shift in methane-cycling communities was associated with high pH, organic matter, soil porosity and micronutrients in pasture soils. These results comprehensively characterize the effect of forest-to-pasture conversion on the microbial communities driving the methane-cycling microorganisms in the Amazon rainforest, which will contribute to the efforts to preserve this important biome.


Assuntos
Microbiota , Solo , Solo/química , Metano/metabolismo , Florestas , Genes Bacterianos , Microbiota/genética , Microbiologia do Solo
4.
Microb Ecol ; 85(3): 1072-1076, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35633375

RESUMO

Soils from Brazilian semiarid regions are highly vulnerable to desertification due to their geology, climate, human actions, and intensive land use that contribute to desertification. Therefore, areas under desertification have increased in the Brazilian semiarid region and it has negatively changed the soil bacterial and archaeal communities and their functionality. On the other hand, although restoration strategies are expensive and there are few soils restoration programs, some practices have been applied to restore these soils under desertification. For instance, conservationist practices and grazing exclusion have been strategically implemented, and they created a new altered soil condition for soil microbial communities, boosting soil microbial diversity. Here, we discuss the potential of these restoration strategies to recover the richness and diversity of soil bacterial and archaeal communities that were described through environmental DNA (eDNA) sequencing of soil samples. eDNA sequencing results show that areas where restoration strategies have been applied in regions under desertification in the Brazilian semiarid have increased species richness, diversity, and structure of the bacterial and archaeal community. In addition, network connectivity and functionality of the soil microorganisms have been improved over time. Altogether, we show that management strategies for soil restoration have positive effects on soil microbial communities and these effects can be monitored using the eDNA sequencing approach.


Assuntos
Archaea , DNA Ambiental , Humanos , Archaea/genética , Solo/química , Conservação dos Recursos Naturais , Brasil , Microbiologia do Solo , Bactérias/genética , RNA Ribossômico 16S/genética
5.
Microb Ecol ; 85(4): 1423-1433, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-35525854

RESUMO

Plants modulate the soil microbiota and select a specific microbial community in the rhizosphere. However, plant domestication reduces genetic diversity, changes plant physiology, and could have an impact on the associated microbiome assembly. Here, we used 16S rRNA gene sequencing to assess the microbial community in the bulk soil and rhizosphere of wild, semi-domesticated, and domesticated genotypes of lima bean (Phaseolus lunatus), to investigate the effect of plant domestication on microbial community assembly. In general, rhizosphere communities were more diverse than bulk soil, but no differences were found among genotypes. Our results showed that the microbial community's structure was different from wild and semi-domesticated as compared to domesticated genotypes. The community similarity decreased 57.67% from wild to domesticated genotypes. In general, the most abundant phyla were Actinobacteria (21.9%), Proteobacteria (20.7%), Acidobacteria (14%), and Firmicutes (9.7%). Comparing the different genotypes, the analysis showed that Firmicutes (Bacillus) was abundant in the rhizosphere of the wild genotypes, while Acidobacteria dominated semi-domesticated plants, and Proteobacteria (including rhizobia) was enriched in domesticated P. lunatus rhizosphere. The domestication process also affected the microbial community network, in which the complexity of connections decreased from wild to domesticated genotypes in the rhizosphere. Together, our work showed that the domestication of P. lunatus shaped rhizosphere microbial communities from taxonomic to a functional level, changing the abundance of specific microbial groups and decreasing the complexity of interactions among them.


Assuntos
Microbiota , Phaseolus , Phaseolus/genética , Phaseolus/microbiologia , Raízes de Plantas/microbiologia , Rizosfera , Domesticação , RNA Ribossômico 16S/genética , Microbiota/genética , Proteobactérias/genética , Plantas , Acidobacteria/genética , Solo/química , Microbiologia do Solo
6.
J Environ Manage ; 344: 118573, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37459811

RESUMO

Forest restoration mitigates climate change by removing CO2 and storing C in terrestrial ecosystems. However, incomplete information on C storage in restored tropical forests often fails to capture the ecosystem's holistic C dynamics. This study provides an integrated assessment of C storage in above to belowground subsystems, its consequences for greenhouse gas (GHG) fluxes, and the quantity, quality, and origin of soil organic matter (SOM) in restored Atlantic forests in Brazil. Relations between SOM properties and soil health indicators were also explored. We examined two restorations using tree planting ('active restoration'): an 8-year-old forest with green manure and native trees planted in two rounds, and a 15-year-old forest with native-planted trees in one round without green manure. Restorations were compared to reformed pasture and primary forest sites. We measured C storage in soil layers (0-10, 10-20, and 20-30 cm), litter, and plants. GHG emissions were assessed using CH4 and CO2 fluxes. SOM quantity was evaluated using C and N, quality using humification index (HLIFS), and origin using δ13C and δ15N. Nine soil health indicators were interrelated with SOM attributes. The primary forest presented the highest C stocks (107.7 Mg C ha-1), followed by 15- and 8-year-old restorations and pasture with 69.8, 55.5, and 41.8 Mg C ha-1, respectively. Soil C stocks from restorations and pasture were 20% lower than primary forest. However, 8- and 15-year-old restorations stored 12.3 and 28.3 Mg ha-1 more aboveground C than pasture. The younger forest had δ13C and δ15N values of 2.1 and 1.7‰, respectively, lower than the 15-year-old forest, indicating more C derived from C3 plants and biological N fixation. Both restorations and pasture had at least 34% higher HLIFS in deeper soil layers (10-30 cm) than primary forest, indicating a lack of labile SOM. Native and 15-year-old forests exhibited higher soil methane influx (141.1 and 61.9 µg m-2 h-1). Forests outperformed pasture in most soil health indicators, with 69% of their variance explained by SOM properties. However, SOM quantity and quality regeneration in both restorations approached the pristine forest state only in the top 10 cm layer, while deeper soil retained agricultural degradation legacies. In conclusion, active restoration of the Atlantic Forest is a superior approach compared to pasture reform for GHG mitigation. Nonetheless, the development of restoration techniques to facilitate labile C input into deeper soil layers (>10 cm) is needed to further improve soil multifunctionality and long-term C storage.


Assuntos
Gases de Efeito Estufa , Solo , Ecossistema , Brasil , Sequestro de Carbono , Dióxido de Carbono/análise , Esterco , Carbono/análise , Florestas , Árvores
7.
Appl Environ Microbiol ; 88(17): e0096322, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36000866

RESUMO

Plant-parasitic nematodes are an important group of pests causing economic losses in agriculture worldwide. Among the plant-parasitic nematodes, the root-knot (Meloidogyne spp.) and root-lesion nematodes (Pratylenchus spp.) are considered the two most important ones affecting soybeans. In general, they damage soybean roots, causing a reduction of about one-third in productivity. The soil microbial community can exert a suppressive effect on the parasitism of plant-parasitic nematodes. Here, we investigated the effects of soil bacterial diversity on Meloidogyne javanica (Meloidogyne-assay) and Pratylenchus brachyurus (Pratylenchus-assay) suppression by manipulating microbial diversity using the dilution-to-extinction approach in two independent experiments under controlled conditions. Furthermore, we recorded the changes in the soil microbial community induced by plant-parasitic nematode infection. In Meloidogyne-assay, microbial diversity reduced the population density of M. javanica and improved plant performance. In Pratylenchus-assay, microbial diversity sustained the performance of soybean plants even at high levels of P. brachyurus parasitism. Each nematode population affected the relative abundance of different bacterial genera and altered the core microbiome of key groups within the bacterial community. Our findings provide fundamental insights into the interactions between soil bacterial diversity and plant-parasitic nematodes in soybean plants. IMPORTANCE Root-knot and root-lesion nematodes cause losses of billions of dollars every year to agriculture worldwide. Traditionally, they are controlled by using chemical nematicides, which in general have a negative impact on the environment and human health. Fortunately, the soil microbial community may suppress these pests, acting as an environmentally friendly alternative to control nematodes. However, the effects of soil microbial diversity on the parasitism of plant-parasitic nematodes still poorly understood. In this study, we provide fundamental insight into the interactions between soil bacterial diversity and plant-parasitic nematodes in soybean plants, which may be useful for the development of new strategies to control these phytopathogens.


Assuntos
Microbiota , Tylenchoidea , Animais , Bactérias/genética , Humanos , Solo , Glycine max , Tylenchoidea/microbiologia
8.
Antonie Van Leeuwenhoek ; 115(9): 1129-1150, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35852752

RESUMO

Understanding the effects of forest-to-agriculture conversion on microbial diversity has been a major goal in soil ecological studies. However, linking community assembly to the ruling ecological processes at local and regional scales remains challenging. Here, we evaluated bacterial community assembly patterns and the ecological processes governing niche specialization in a gradient of geography, seasonality, and land-use change, totaling 324 soil samples, 43 habitat characteristics (abiotic factors), and 16 metabolic and co-occurrence patterns (biotic factors), in the Brazilian Atlantic Rainforest, a subtropical biome recognized as one the world's largest and most threatened hotspots of biodiversity. Pairwise beta diversities were lower in pastures than in forest and no-till soils. Pasture communities showed a predominantly neutral model, regarding stochastic processes, with moderate dispersion, leading to biotic homogenization. Most no-till and forest microbial communities followed a niche-based model, with low rates of dispersal and weak homogenizing selection, indicating niche specialization or variable selection. Historical and evolutionary contingencies, as represented by soil type, season, and dispersal limitation were the main drivers of microbial assembly and processes at the local scale, markedly correlated with the occurrence of endemic microbes. Our results indicate that the patterns of assembly and their governing processes are dependent on the niche occupancy of the taxa evaluated (generalists or specialists). They are also more correlated with historical and evolutionary contingencies and the interactions among taxa (i.e., co-occurrence patterns) than the land-use change itself.


Assuntos
Microbiota , Microbiologia do Solo , Biodiversidade , Florestas , Solo
9.
Environ Microbiol ; 23(7): 4054-4073, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34245102

RESUMO

Active volcanoes in Antarctica have remarkable temperature and geochemical gradients that could select for a wide variety of microbial adaptive mechanisms and metabolic pathways. Deception Island is a stratovolcano flooded by the sea, resulting in contrasting ecosystems such as permanent glaciers and active fumaroles, which creates steep gradients that have been shown to affect microbial diversity. In this study, we used shotgun metagenomics and metagenome-assembled genomes to explore the metabolic potentials and survival strategies of microbial communities along an extreme temperature gradient in fumarole and glacier sediments on Deception Island. We observed that communities from a 98 °C fumarole were significantly enriched in genes related to hyperthermophilic (e.g. reverse gyrase, GroEL/GroES and thermosome) and oxidative stress responses, as well as genes related to sulfate reduction, ammonification and carbon fixation. Communities from <80 °C fumaroles possessed more genes related osmotic, cold- and heat-shock responses, and diverse metabolic potentials, such as those related to sulfur oxidation and denitrification, while glacier communities showed abundant metabolic potentials mainly related to heterotrophy. Through the reconstruction of genomes, we were able to reveal the metabolic potentials and different survival strategies of underrepresented taxonomic groups, especially those related to Nanoarchaeota, Pyrodictiaceae and thermophilic ammonia-oxidizing archaeal lineages.


Assuntos
Bactérias , Microbiota , Regiões Antárticas , Archaea/genética , Bactérias/genética , Microbiota/genética , Temperatura
10.
Exp Parasitol ; 231: 108175, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34740587

RESUMO

We evaluated Haemonchus contortus (HC) and Trichostrongylus colubriformis (TC) infection on the ruminal microbial community of Santa Ines lambs to better understand the pathophysiology of parasite infections and the interactions among gastrointestinal nematodes and gut resident microbiota. In this study, 18 six months of age lambs were maintained for 34 days in individual pens divided into three treatments that included animals infected with HC and TC, and control (infection-free). Haematological, ruminal parameter and microbial nitrogen absorbed by pune derivatives, as well as enteric methane emission (CH4), were analysed, and the rumen microbial taxonomic and functional profile assessed by shotgun metagenomics. The analysis showed that total protein, albumin, urea, and butyrate level were lower in animals infected by both parasites, while HC infection also decreased the haemoglobin level. Both infected groups (TC and HC) increased the enteric methane emission (CH4). TC and HC infections increased the diversity and richness of functional microbial genes. Most alterations in the rumen microbiome composition of infected groups are associated with the suppression of microbes involved in microbial homeostasis maintenance and expansion of the archaeal community in the infected animals. Infection led to an increased abundance of nitrogen, amino acid, protein, and energy metabolism genes. Overall, TC and HC infection increased the enteric methane emission, negatively affected taxon's responsible for maintenance de rumen homeostasis and modulated some important genes related to protein and energy metabolism.


Assuntos
Microbioma Gastrointestinal , Hemoncose/veterinária , Rúmen/microbiologia , Doenças dos Ovinos/microbiologia , Doenças dos Ovinos/parasitologia , Tricostrongiloidíase/veterinária , Animais , Cromatografia Gasosa/métodos , Cromatografia Gasosa/veterinária , DNA/química , DNA/isolamento & purificação , Ionização de Chama/veterinária , Hemoncose/complicações , Hemoncose/microbiologia , Metagenômica , Metano/análise , Metano/metabolismo , Purinas/urina , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Análise de Sequência de DNA/veterinária , Ovinos , Tricostrongiloidíase/complicações , Tricostrongiloidíase/microbiologia
11.
Microb Ecol ; 79(1): 110-122, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31250077

RESUMO

Forest-to-agriculture conversion has been identified as a major threat to soil biodiversity and soil processes resilience, although the consequences of long-term land use change to microbial community assembly and ecological processes have been often neglected. Here, we combined metagenomic approach with a large environmental dataset, to (i) identify the microbial assembly patterns and, (ii) to evaluate the ecological processes governing microbial assembly, in bulk soil and soybean rhizosphere, along a long-term forest-to-agriculture conversion chronosequence, in Eastern Amazon. We hypothesized that (i) microbial communities in bulk soil and rhizosphere have different assembly patterns and (ii) the weight of the four ecological processes governing assembly differs between bulk soil and rhizosphere and along the chronosequence in the same fraction. Community assembly in bulk soil fitted most the zero-sum multinomial (ZSM) neutral-based model, regardless of time. Low to intermediate dispersal was observed. Decreasing influence of abiotic factors was counterbalanced by increasing influence of biotic factors, as the chronosequence advanced. Undominated ecological processes of dispersal limitation and variable selection governing community assembly were observed in this soil fraction. For soybean rhizosphere, community assembly fitted most the lognormal niche-based model in all chronosequence areas. High dispersal and an increasing influence of abiotic factors coupled with a decreasing influence of biotic factors were found along the chronosequence. Thus, we found a dominant role of dispersal process governing microbial assembly with a secondary effect of homogeneous selection process, mainly driven by decreasing aluminum and increased cations saturation in soil solution, due to long-term no-till cropping. Together, our results indicate that long-term no-till lead community abundances in bulk soil to be in a transient and conditional state, while for soybean rhizosphere, community abundances reach a periodic and permanent distribution state. Dominant dispersal process in rhizosphere, coupled with homogeneous selection, brings evidences that soybean root system selects microbial taxa via trade-offs in order to keep functional resilience of soil processes.


Assuntos
Bactérias/isolamento & purificação , Microbiota , Microbiologia do Solo , Agricultura , Bactérias/classificação , Bactérias/genética , Biodiversidade , Florestas , Filogenia , Rizosfera , Glycine max/crescimento & desenvolvimento , Árvores/crescimento & desenvolvimento
12.
Antonie Van Leeuwenhoek ; 111(1): 101-114, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28831604

RESUMO

Soil microorganisms play crucial roles in ecosystem functioning, and the central goal in microbial ecology studies is to elucidate which factors shape community structure. A better understanding of the relationship between microbial diversity, functions and environmental parameters would increase our ability to set conservation priorities. Here, the bacterial and archaeal community structure in Atlantic Forest, restinga and mangrove soils was described and compared based on shotgun metagenomics. We hypothesized that each distinct site would harbor a distinct taxonomic and functional soil community, which is influenced by environmental parameters. Our data showed that the microbiome is shaped by soil properties, with pH, base saturation, boron and iron content significantly correlated to overall community structure. When data of specific phyla were correlated to specific soil properties, we demonstrated that parameters such as boron, copper, sulfur, potassium and aluminum presented significant correlation with the most number of bacterial groups. Mangrove soil was the most distinct site and presented the highest taxonomic and functional diversity in comparison with forest and restinga soils. From the total 34 microbial phyla identified, 14 were overrepresented in mangrove soils, including several archaeal groups. Mangrove soils hosted a high abundance of sequences related to replication, survival and adaptation; forest soils included high numbers of sequences related to the metabolism of nutrients and other composts; while restinga soils included abundant genes related to the metabolism of carbohydrates. Overall, our finds show that the microbial community structure and functional potential were clearly different across the environmental gradient, followed by functional adaptation and both were related to the soil properties.


Assuntos
Florestas , Metagenoma , Metagenômica , Microbiologia do Solo , Áreas Alagadas , Biodiversidade , Brasil , Geografia , Metagenômica/métodos
13.
Curr Issues Mol Biol ; 24: 103-118, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28686570

RESUMO

Microbes constitute about a third of the Earth's biomass and are composed by an enormous genetic diversity. In a majority of environments the microbial communities play crucial roles for the ecosystem functioning, where a drastic biodiversity alteration or loss could lead to negative effects on the environment and sustainability. A central goal in microbiome studies is to elucidate the relation between microbial diversity to functions. A better understanding of the relation diversity-function would increase the ability to manipulate that diversity to improve plant and animal health and also setting conservation priorities. The recent advances in genomic methodologies in microbial ecology have provide means to assess highly complex communities in detail, making possible the link between diversity and the functions performed by the microbes. In this work we first explore some advances in bioinformatics tools to connect the microbial community biodiversity to their potential metabolism and after present some examples of how this information can be useful for a better understanding of the microbial role in the environment.


Assuntos
Bactérias/genética , Bactérias/metabolismo , Biodiversidade , Ecossistema , Metagenômica/métodos , Microbiologia do Solo , Bactérias/classificação , Filogenia
14.
Mol Ecol ; 25(10): 2244-57, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26994316

RESUMO

Selective logging and forest conversion to oil palm agriculture are rapidly altering tropical forests. However, functional responses of the soil microbiome to these land-use changes are poorly understood. Using 16S rRNA gene and shotgun metagenomic sequencing, we compared composition and functional attributes of soil biota between unlogged, once-logged and twice-logged rainforest, and areas converted to oil palm plantations in Sabah, Borneo. Although there was no significant effect of logging history, we found a significant difference between the taxonomic and functional composition of both primary and logged forests and oil palm. Oil palm had greater abundances of genes associated with DNA, RNA, protein metabolism and other core metabolic functions, but conversely, lower abundance of genes associated with secondary metabolism and cell-cell interactions, indicating less importance of antagonism or mutualism in the more oligotrophic oil palm environment. Overall, these results show a striking difference in taxonomic composition and functional gene diversity of soil microorganisms between oil palm and forest, but no significant difference between primary forest and forest areas with differing logging history. This reinforces the view that logged forest retains most features and functions of the original soil community. However, networks based on strong correlations between taxonomy and functions showed that network complexity is unexpectedly increased due to both logging and oil palm agriculture, which suggests a pervasive effect of both land-use changes on the interaction of soil microbes.


Assuntos
Agricultura , Agricultura Florestal , Microbiota , Microbiologia do Solo , Arecaceae/crescimento & desenvolvimento , Bactérias/classificação , Biodiversidade , Bornéu , Conservação dos Recursos Naturais , Florestas , Metagenoma , RNA Ribossômico 16S/genética
15.
Antonie Van Leeuwenhoek ; 109(12): 1643-1654, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27629424

RESUMO

Here we show that both liming the burnt sugarcane and the green harvest practice alter bacterial community structure, diversity and composition in sugarcane fields in northeastern São Paulo state, Brazil. Terminal restriction fragment length polymorphism fingerprinting and 16S rRNA gene cloning and sequencing were used to analyze changes in soil bacterial communities. The field experiment consisted of sugarcane-cultivated soils under different regimes: green sugarcane (GS), burnt sugarcane (BS), BS in soil amended with lime applied to increase soil pH (BSL), and native forest (NF) as control soil. The bacterial community structures revealed disparate patterns in sugarcane-cultivated soils and forest soil (R = 0.786, P = 0.002), and overlapping patterns were shown for the bacterial community structure among the different management regimes applied to sugarcane (R = 0.194, P = 0.002). The numbers of operational taxonomic units (OTUs) found in the libraries were 117, 185, 173 and 166 for NF, BS, BSL and GS, respectively. Sugarcane-cultivated soils revealed higher bacterial diversity than NF soil, with BS soil accounting for a higher richness of unique OTUs (101 unique OTUs) than NF soil (23 unique OTUs). Cluster analysis based on OTUs revealed similar bacterial communities in NF and GS soils, while the bacterial community from BS soil was most distinct from the others. Acidobacteria and Alphaproteobacteria were the most abundant bacterial phyla across the different soils with Acidobacteria Gp1 accounting for a higher abundance in NF and GS soils than burnt sugarcane-cultivated soils (BS and BSL). In turn, Acidobacteria Gp4 abundance was higher in BS soils than in other soils. These differential responses in soil bacterial community structure, diversity and composition can be associated with the agricultural management, mainly liming practices, and harvest methods in the sugarcane-cultivated soils, and they can be detected shortly after harvest.


Assuntos
Agricultura/métodos , Bactérias/efeitos dos fármacos , Compostos de Cálcio/farmacologia , Óxidos/farmacologia , Saccharum , Microbiologia do Solo , Solo/química , Bactérias/classificação , Bactérias/genética , Brasil , Incêndios , Análise Multivariada , Polimorfismo de Fragmento de Restrição , RNA Bacteriano , RNA Ribossômico 16S/genética
16.
BioTechnologia (Pozn) ; 105(1): 83-95, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38633888

RESUMO

The rise of multidrug resistance among microorganisms, where they develop resistance against formerly efficacious drugs, has led to increased disease prevalence and mortality rates, posing a growing challenge. Globally, antibiotic resistance has made a significant impact, causing millions of fatalities each year. Endophytic fungi have gained considerable attention in research due to their potential to produce a wide variety of secondary metabolites, including natural substances with antimicrobial capabilities. The genera Aspergillus and Penicillium stand out as the most prevalent species of endophytic fungi. Filamentous fungi, such as these are responsible for the production of 45% of known microbial metabolites. This review focuses on exploring the bioactive substances produced by endophytic fungi from these two genera, particularly in conjunction with medicinal plants. Emphasis is placed on their antimicrobial activity and their ability to inhibit multidrug-resistant pathogens. As the need for alternative treatments to combat drug-resistant infections continues to grow, endophytic fungi have the potential to provide a valuable source of bioactive molecules for medical applications.

17.
J Hazard Mater ; 471: 134303, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38669921

RESUMO

Despite the widespread use of biochar for soil and sediment remediation, little is known about the impact of pyrolysis temperature on the biogeochemistry of arsenic (As) and lead (Pb) and microorganisms in sediment under reducing conditions. In this study, we investigated the effects of pyrolysis temperature and the addition of glucose on the release and transformation of As and Pb, as well as their potential effects on the bacterial community in contaminated sediments. The addition of biochar altered the geochemical cycle of As, as it favors specific bacterial groups capable of changing species from As(V) to As(III) through fermentation, sulfate respiration and nitrate reduction. The carbon quality and content of N and S in solution shaped the pH and redox potential in a way that changed the microbial community, favoring Firmicutes and reducing Proteobacteria. This change played a fundamental role in the reductive dissolution of As and Pb minerals. The addition of biochar was the only efficient way to remove Pb, possibly as a function of its sorption and precipitation mechanisms. Such insights could contribute to the production or choice of high-efficiency biochar for the remediation of sediments subjected to redox conditions.


Assuntos
Arsênio , Carvão Vegetal , Sedimentos Geológicos , Chumbo , Mineração , Oxirredução , Carvão Vegetal/química , Arsênio/química , Arsênio/análise , Arsênio/metabolismo , Sedimentos Geológicos/microbiologia , Sedimentos Geológicos/química , Chumbo/química , Pirólise , Bactérias/metabolismo , Poluentes do Solo/química , Poluentes do Solo/metabolismo , Temperatura
18.
FEMS Microbiol Ecol ; 100(6)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38821514

RESUMO

Complex cross-talk occurs between gastrointestinal nematodes and gut symbiotic microbiota, with consequences for animal metabolism. To investigate the connection between methane production and endoparasites, this study evaluated the effect of mixed infection with Haemonchus contortus and Trichostrongylus colubriformis on methanogenic and methanotrophic community in rumen microbiota of lambs using shotgun metagenomic and real-time quantitative PCR (qPCR). The rumen content was collected from six Santa Inês lambs, (7 months old) before and after 42 days infection by esophageal tube. The metagenomic analysis showed that the infection affected the microbial community structure leading to decreased abundance of methanotrophs bacteria, i.e. α-proteobacteria and ß-proteobacteria, anaerobic methanotrophic archaea (ANME), protozoa, sulfate-reducing bacteria, syntrophic bacteria with methanogens, geobacter, and genes related to pyruvate, fatty acid, nitrogen, and sulfur metabolisms, ribulose monophosphate cycle, and Entner-Doudoroff Pathway. Additionally, the abundance of methanogenic archaea and the mcrA gene did not change. The co-occurrence networks enabled us to identify the interactions between each taxon in microbial communities and to determine the reshaping of rumen microbiome associations by gastrointestinal nematode infection. Besides, the correlation between ANMEs was lower in the animal's postinfection. Our findings suggest that gastrointestinal parasites potentially lead to decreased methanotrophic metabolism-related microorganisms and genes.


Assuntos
Microbioma Gastrointestinal , Metano , Rúmen , Doenças dos Ovinos , Animais , Rúmen/microbiologia , Rúmen/parasitologia , Ovinos/microbiologia , Metano/metabolismo , Doenças dos Ovinos/microbiologia , Doenças dos Ovinos/parasitologia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Archaea/genética , Archaea/classificação , Haemonchus/genética , Trichostrongylus , Microbiota , Infecções por Nematoides/microbiologia , Infecções por Nematoides/veterinária
19.
Braz J Microbiol ; 55(2): 1817-1828, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38358421

RESUMO

The Amazon rainforest, a hotspot for biodiversity, is a crucial research area for scientists seeking novel microorganisms with ecological and biotechnological significance. A key region within the Amazon rainforest is the Amazonian Dark Earths (ADE), noted for supporting diverse plant and microbial communities, and its potential as a blueprint for sustainable agriculture. This study delineates the isolation, morphological traits, carbon source utilization, and genomic features of Fictibacillus terranigra CENA-BCM004, a candidate novel species of the Fictibacillus genus isolated from ADE. The genome of Fictibacillus terranigra was sequenced, resulting in 16 assembled contigs, a total length of 4,967,627 bp, and a GC content of 43.65%. Genome annotation uncovered 3315 predicted genes, encompassing a wide range of genes linked to various metabolic pathways. Phylogenetic analysis indicated that CENA-BCM004 is a putative new species, closely affiliated with other unidentified Fictibacillus species and Bacillus sp. WQ 8-8. Moreover, this strain showcased a multifaceted metabolic profile, revealing its potential for diverse biotechnological applications. It exhibited capabilities to antagonize pathogens, metabolize multiple sugars, mineralize organic matter compounds, and solubilize several minerals. These insights substantially augment our comprehension of microbial diversity in ADE and underscore the potential of Fictibacillus terranigra as a precious resource for biotechnological endeavors. The genomic data generated from this study will serve as a foundational resource for subsequent research and exploration of the biotechnological capabilities of this newly identified species.


Assuntos
Composição de Bases , Genoma Bacteriano , Filogenia , Floresta Úmida , Genômica , RNA Ribossômico 16S/genética , Bacillaceae/genética , Bacillaceae/classificação , Bacillaceae/isolamento & purificação , Bacillaceae/metabolismo , Brasil , DNA Bacteriano/genética
20.
Sci Rep ; 14(1): 6845, 2024 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514851

RESUMO

Land degradation by deforestation adversely impacts soil properties, and long-term restoration practices have been reported to potentially reverse these effects, particularly on soil microorganisms. However, there is limited knowledge regarding the short-term effects of restoration on the soil bacterial community in semiarid areas. This study evaluates the bacterial community in soils experiencing degradation (due to slash-and-burn deforestation) and restoration (utilizing stone cordons and revegetation), in comparison to a native soil in the Brazilian semiarid region. Three areas were selected: (a) under degradation; (b) undergoing short-term restoration; and (c) a native area, and the bacterial community was assessed using 16S rRNA sequencing on soil samples collected during both dry and rainy seasons. The dry and rainy seasons exhibited distinct bacterial patterns, and native sites differed from degraded and restoration sites. Chloroflexi and Proteobacteria phyla exhibited higher prevalence in degraded and restoration sites, respectively, while Acidobacteria and Actinobacteria were more abundant in sites undergoing restoration compared to degraded sites. Microbial connections varied across sites and seasons, with an increase in nodes observed in the native site during the dry season, more edges and positive connections in the restoration site, and a higher occurrence of negative connections in the degradation site during the rainy season. Niche occupancy analysis revealed that degradation favored specialists over generalists, whereas restoration exhibited a higher prevalence of generalists compared to native sites. Specifically, degraded sites showed a higher abundance of specialists in contrast to restoration sites. This study reveals that land degradation impacts the soil bacterial community, leading to differences between native and degraded sites. Restoring the soil over a short period alters the status of the bacterial community in degraded soil, fostering an increase in generalist microbes that contribute to enhanced soil stability.


Assuntos
Bactérias , Solo , RNA Ribossômico 16S/genética , Brasil , Bactérias/genética , Acidobacteria/genética , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA