Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Ultrasound Med ; 42(12): 2695-2706, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37772474

RESUMO

This scoping review examines the emerging field of synthetic ultrasound generation using machine learning (ML) models in radiology. Nineteen studies were analyzed, revealing three primary methodological strategies: unconditional generation, conditional generation, and domain translation. Synthetic ultrasound is mainly used to augment training datasets and as training material for radiologists. Blind expert assessment and Fréchet Inception Distance are common evaluation methods. Current limitations include the need for large training datasets, manual annotations for controllable generation, and insufficient research on incorporating new domain knowledge. While generative ultrasound models show promise, further work is required for clinical implementation.


Assuntos
Aprendizado de Máquina , Radiologia , Humanos , Ultrassonografia , Radiologistas , Processamento de Imagem Assistida por Computador
2.
Int J Comput Assist Radiol Surg ; 17(4): 711-718, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35278156

RESUMO

PURPOSE: Machine learning (ML) models in medical imaging (MI) can be of great value in computer aided diagnostic systems, but little attention is given to the confidence (alternatively, uncertainty) of such models, which may have significant clinical implications. This paper applied, validated, and explored a technique for assessing uncertainty in convolutional neural networks (CNNs) in the context of MI. MATERIALS AND METHODS: We used two publicly accessible imaging datasets: a chest x-ray dataset (pneumonia vs. control) and a skin cancer imaging dataset (malignant vs. benign) to explore the proposed measure of uncertainty based on experiments with different class imbalance-sample sizes, and experiments with images close to the classification boundary. We also further verified our hypothesis by examining the relationship with other performance metrics and cross-checking CNN predictions and confidence scores with an expert radiologist (available in the Supplementary Information). Additionally, bounds were derived on the uncertainty metric, and recommendations for interpretability were made. RESULTS: With respect to training set class imbalance for the pneumonia MI dataset, the uncertainty metric was minimized when both classes were nearly equal in size (regardless of training set size) and was approximately 17% smaller than the maximum uncertainty resulting from greater imbalance. We found that less-obvious test images (those closer to the classification boundary) produced higher classification uncertainty, about 10-15 times greater than images further from the boundary. Relevant MI performance metrics like accuracy, sensitivity, and sensibility showed seemingly negative linear correlations, though none were statistically significant (p [Formula: see text] 0.05). The expert radiologist and CNN expressed agreement on a small sample of test images, though this finding is only preliminary. CONCLUSIONS: This paper demonstrated the importance of uncertainty reporting alongside predictions in medical imaging. Results demonstrate considerable potential from automatically assessing classifier reliability on each prediction with the proposed uncertainty metric.


Assuntos
Aprendizado de Máquina , Redes Neurais de Computação , Diagnóstico por Imagem , Humanos , Reprodutibilidade dos Testes , Incerteza
3.
Int J Comput Assist Radiol Surg ; 15(12): 2041-2048, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32965624

RESUMO

PURPOSE: Machine learning (ML) algorithms are well known to exhibit variations in prediction accuracy when provided with imbalanced training sets typically seen in medical imaging (MI) due to the imbalanced ratio of pathological and normal cases. This paper presents a thorough investigation of the effects of class imbalance and methods for mitigating class imbalance in ML algorithms applied to MI. METHODS: We first selected five classes from the Image Retrieval in Medical Applications (IRMA) dataset, performed multiclass classification using the random forest model (RFM), and then performed binary classification using convolutional neural network (CNN) on a chest X-ray dataset. An imbalanced class was created in the training set by varying the number of images in that class. Methods tested to mitigate class imbalance included oversampling, undersampling, and changing class weights of the RFM. Model performance was assessed by overall classification accuracy, overall F1 score, and specificity, recall, and precision of the imbalanced class. RESULTS: A close-to-balanced training set resulted in the best model performance, and a large imbalance with overrepresentation was more detrimental to model performance than underrepresentation. Oversampling and undersampling methods were both effective in mitigating class imbalance, and efficacy of oversampling techniques was class specific. CONCLUSION: This study systematically demonstrates the effect of class imbalance on two public X-ray datasets on RFM and CNN, making these findings widely applicable as a reference. Furthermore, the methods employed here can guide researchers in assessing and addressing the effects of class imbalance, while considering the data-specific characteristics to optimize imbalance mitigating methods.


Assuntos
Aprendizado de Máquina , Redes Neurais de Computação , Radiografia Torácica , Algoritmos , Conjuntos de Dados como Assunto , Humanos , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA