Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
J Org Chem ; 88(13): 8674-8689, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37341522

RESUMO

ß-cyclodextrin (ßCyD) derivatives equipped with aromatic appendages at the secondary face exhibit tailorable self-assembling capabilities. The aromatic modules can participate in inclusion phenomena and/or aromatic-aromatic interactions. Supramolecular species can thus form that, at their turn, can engage in further co-assembling with third components in a highly regulated manner; the design of nonviral gene delivery systems is an illustrative example. Endowing such systems with stimuli responsiveness while keeping diastereomeric purity and a low synthetic effort is a highly wanted advancement. Here, we show that an azobenzene moiety can be "clicked" to a single secondary O-2 position of ßCyD affording 1,2,3-triazole-linked ßCyD-azobenzene derivatives that undergo reversible light-controlled self-organization into dimers where the monomer components face their secondary rims. Their photoswitching and supramolecular properties have been thoroughly characterized by UV-vis absorption, induced circular dichroism, nuclear magnetic resonance, and computational techniques. As model processes, the formation of inclusion complexes between a water-soluble triazolylazobenzene derivative and ßCyD as well as the assembly of native ßCyD/ßCyD-azobenzene derivative heterodimers have been investigated in parallel. The stability of the host-guest supramolecules has been challenged against the competitor guest adamantylamine and the decrease of the medium polarity using methanol-water mixtures. The collective data support that the E-configured ßCyD-azobenzene derivatives, in aqueous solution, form dimers stabilized by the interplay of aromatic-aromatic and aromatic-ßCyD cavity interactions after partial reciprocal inclusion. Photoswitching to the Z-isomer disrupts the dimers into monomeric species, offering opportunity for the spatiotemporal control of the organizational status by light.


Assuntos
beta-Ciclodextrinas , Dimerização , Compostos Azo , Polímeros , Água
2.
Ecotoxicol Environ Saf ; 266: 115573, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37856983

RESUMO

Mechanochemistry and photocatalysis are emergent technologies for the remediation of polycyclic aromatic hydrocarbons (PAHs) in soils. In this work, mechanochemistry and photocatalysis are combined for pyrene degradation. The photodegradation of pyrene, when in contact with sepiolite under pressure application, is studied. The mechanical treatment leads to a pyrene crystal phase transformation. In this new phase, pyrene undergoes a fast photodegradation in the 320-420 nm range. We show that sepiolite is superior as a photocatalyst in pyrene degradation to TiO2, the most exploited photocatalyst. A broad physicochemical characterization is carried out to propose a mechanism in which the photoexcitation of mechanically altered pyrene leads to an electron transfer to sepiolite matrix, which triggers the PAH degradation. Finally, we want to highlight that the pyrene/sepiolite combination is a simplified system to shed light on how PAH photodegradation may occur in soils.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Fotólise , Hidrocarbonetos Policíclicos Aromáticos/química , Pirenos , Luz , Solo/química
3.
Macromol Rapid Commun ; 43(11): e2200145, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35426201

RESUMO

A robust strategy is reported to build perfectly monodisperse star polycations combining a trehalose-based cyclooligosaccharide (cyclotrehalan, CT) central core onto which oligoethyleneimine radial arms are installed. The architectural perfection of the compounds is demonstrated by a variety of physicochemical techniques, including NMR, MS, DLS, TEM, and GPC. Key to the strategy is the possibility of customizing the cavity size of the macrocyclic platform to enable/prevent the inclusion of adamantane motifs. These properties can be taken into advantage to implement sequential levels of stimuli responsiveness by combining computational design, precision chemistry and programmed host-guest interactions. Specifically, it is shown that supramolecular dimers implying a trimeric CT-tetraethyleneimine star polycation and purposely designed bis-adamantane guests are preorganized to efficiently complex plasmid DNA (pDNA) into transfection-competent nanocomplexes. The stability of the dimer species is responsive to the protonation state of the cationic clusters, resulting in dissociation at acidic pH. This process facilitates endosomal escape, but reassembling can take place in the cytosol then handicapping pDNA nuclear import. By equipping the ditopic guest with a redox-sensitive disulfide group, recapturing phenomena are prevented, resulting in drastically improved transfection efficiencies both in vivo and in vitro.


Assuntos
Adamantano , Polímeros , Dimerização , Concentração de Íons de Hidrogênio , Oxirredução , Polieletrólitos , Polímeros/química
4.
Chemistry ; 27(36): 9429-9438, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-33882160

RESUMO

Instilling segregated cationic and lipophilic domains with an angular disposition in a trehalose-based trifaceted macrocyclic scaffold allows engineering patchy molecular nanoparticles leveraging directional interactions that emulate those controlling self-assembling processes in viral capsids. The resulting trilobular amphiphilic derivatives, featuring a Mickey Mouse architecture, can electrostatically interact with plasmid DNA (pDNA) and further engage in hydrophobic contacts to promote condensation into transfectious nanocomplexes. Notably, the topology and internal structure of the cyclooligosaccharide/pDNA co-assemblies can be molded by fine-tuning the valency and characteristics of the cationic and lipophilic patches, which strongly impacts the transfection efficacy in vitro and in vivo. Outstanding organ selectivities can then be programmed with no need of incorporating a biorecognizable motif in the formulation. The results provide a versatile strategy for the construction of fully synthetic and perfectly monodisperse nonviral gene delivery systems uniquely suited for optimization schemes by making cyclooligosaccharide patchiness the focus.


Assuntos
Ciclodextrinas , Nanopartículas , DNA , Técnicas de Transferência de Genes , Plasmídeos/genética , Transfecção
5.
J Org Chem ; 86(23): 16259-16267, 2021 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-34806882

RESUMO

Previously unknown 1,10a-dihydro-1-aza-10a-boraphenanthrene and 6a,7-dihydro-7-aza-6a-boratetraphene have been efficiently synthesized. Bromination of these BN-PAHs proceeds with complete regioselectivity, resulting in the formation of different substituted derivatives via cross-coupling reactions. These compounds exhibit rather high fluorescence quantum yields (up to ϕF = 0.80).


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Corantes , Fluorescência
6.
Chemistry ; 26(66): 15259-15269, 2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-32710799

RESUMO

Original molecular vectors that ensure broad flexibility to tune the shape and surface properties of plasmid DNA (pDNA) condensates are reported herein. The prototypic design involves a cyclodextrin (CD) platform bearing a polycationic cluster at the primary face and a doubly linked aromatic module bridging two consecutive monosaccharide units at the secondary face that behaves as a topology-encoding element. Subtle differences at the molecular level then translate into disparate morphologies at the nanoscale, including rods, worms, toroids, globules, ellipsoids, and spheroids. In vitro evaluation of the transfection capabilities revealed marked selectivity differences as a function of nanocomplex morphology. Remarkably high transfection efficiencies were associated with ellipsoidal or spherical shapes with a lamellar internal arrangement of pDNA chains and CD bilayers. Computational studies support that the stability of such supramolecular edifices is directly related to the tendency of the molecular vector to form noncovalent dimers upon DNA templating. Because the stability of the dimers depends on the protonation state of the polycationic clusters, the coaggregates display pH responsiveness, which facilitates endosomal escape and timely DNA release, a key step in successful transfection. The results provide a versatile strategy for the construction of fully synthetic and perfectly monodisperse nonviral gene delivery systems uniquely suited for optimization schemes.


Assuntos
Ciclodextrinas , DNA/química , Técnicas de Transferência de Genes , Plasmídeos/genética , Transfecção
7.
Biomacromolecules ; 21(12): 5173-5188, 2020 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-33084317

RESUMO

The architectural perfection and multivalency of dendrimers have made them useful for biodelivery via peripheral functionalization and the adjustment of dendrimer generations. Modulation of the core-forming and internal matrix-forming structures offers virtually unlimited opportunities for further optimization, but only in a few cases this has been made compatible with strict diastereomeric purity over molecularly diverse series, low toxicity, and limited synthetic effort. Fully regular star polymers built on biocompatible macrocyclic platforms, such as hyperbranched cyclodextrins, offer advantages in terms of facile synthesis and flexible compositions, but core elaboration in terms of shape and function becomes problematic. Here we report the synthesis and characterization of star polymers consisting of functional trehalose-based macrocyclic cores (cyclotrehalans, CTs) and aminothiourea dendron arms, which can be efficiently synthesized from sequential click reactions of orthogonal monomers, display no cytotoxicity, and efficiently complex and deliver plasmid DNA in vitro and in vivo. When compared with some commercial cationic dendrimers or polymers, the new CT-scaffolded star polymers show better transfection efficiencies in several cell lines and structure-dependent cell selectivity patterns. Notably, the CT core could be predefined to exert Zn(II) complexing or molecular inclusion capabilities, which has been exploited to synergistically boost cell transfection by orders of magnitude and modulate the organ tropism in vivo.


Assuntos
Dendrímeros , Polímeros , Cátions , DNA , Plasmídeos , Transfecção
8.
J Org Chem ; 83(10): 5588-5597, 2018 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-29683327

RESUMO

The topology of ß-cyclodextrin can be molded, from toroidal to ovoid basket-shaped, by the installation of an o- or m-xylylene moiety connecting two consecutive d-glucopyranosyl units through the secondary O-2(I) and O-3(II) positions. This strategy can be exploited advantageously to precast the cavity for preferential inclusion of globular or planar guests as well as to privilege dimeric or monomeric species in water solution.

9.
Inorg Chem ; 55(3): 1304-14, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26788881

RESUMO

Bis(imidazolylidene)palladium complexes 9-12 containing a sterically hindered aryl group (mesityl or 2,6-diisopropylphenyl) and a poly(benzyl ether) dendron as N-substituents of the NHC ligand are accessible up to the third generation by transmetalation of the corresponding silver complexes. Complexes 9-12 are soluble, active, and very stable catalysts under Heck reaction conditions. The NHC ligand appears to be stably coordinated to the Pd during catalysis. The catalytic activity increases with generation number, although irregularly. The palladium site is not significantly congested in the reaction solvent by the increasing size of the dendritic substituents, as corroborated by X-ray diffraction, fluorescence and DOSY-NMR spectroscopy, and MD simulation studies. This is a consequence of the conformational semiflexibility of the poly(benzyl ether) dendrons and the benzylic link between these dendrons and the N-heterocyclic ligands.

10.
Chemistry ; 21(34): 12093-104, 2015 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-26184887

RESUMO

Only a few examples of monodisperse molecular entities that can compact exogenous nucleic acids into nanocomplexes, protect the cargo from the biological environment, facilitate cell internalization, and promote safe transfection have been reported up to date. Although these species open new venues for fundamental studies on the structural requirements that govern the intervening processes and their application in nonviral gene-vector design, the synthesis of these moieties generally requires a relatively sophisticated chemistry, which hampers further development in gene therapy. Herein, we report an original strategy for the reversible complexation and delivery of DNA based on the supramolecular preorganization of a ß-cyclodextrin-scaffolded polycationic cluster facilitated by bisadamantane guests. The resulting gemini-type, dual-cluster supramolecules can then undergo DNA-templated self-assembly at neutral pH value by bridging parallel DNA oligonucleotide fragments. This hierarchical DNA condensation mechanism affords transfectious nanoparticles with buffering capabilities, thus facilitating endosomal escape following cell internalization. Protonation also destabilizes the supramolecular dimers and consequently the whole supramolecular edifice, thus assisting DNA release. Our advanced hypotheses are supported by isothermal titration calorimetry, NMR and circular dichroism spectroscopic analysis, gel electrophoresis, dynamic light scattering, TEM, molecular mechanics, molecular dynamics, and transfection studies conducted in vitro and in vivo.


Assuntos
DNA/química , Nanopartículas/química , Oligonucleotídeos/química , Fragmentos de Peptídeos/química , Poliaminas/química , beta-Ciclodextrinas/química , Linhagem Celular , DNA/metabolismo , Técnicas de Transferência de Genes , Terapia Genética , Humanos , Concentração de Íons de Hidrogênio , Oligonucleotídeos/metabolismo , Fragmentos de Peptídeos/metabolismo , Polieletrólitos , Transfecção
11.
Org Biomol Chem ; 13(2): 527-38, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25378061

RESUMO

A library of azonia aromatic cations has been studied in order to gain insights into the effect of the size, shape and charge distribution on the fluorescence, DNA interactions and DNA sequence selectivity properties. Fluorescence-based thermal denaturation experiments, spectrofluorimetric titrations, circular dichroism measurements and theoretical simulations have shown that some of the studied chromophores have interesting fluorescence properties and two of them also show a consistent DNA-binding ability by intercalation, with a potential preference for AT-rich sequences.


Assuntos
DNA/química , Cátions/química , Dicroísmo Circular , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Simulação de Dinâmica Molecular , Desnaturação de Ácido Nucleico , Espectrometria de Fluorescência
12.
Chemistry ; 20(22): 6622-7, 2014 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-24740814

RESUMO

The ability of cyclodextrin-based polycationic cluster to undergo reversible DNA condensation and release in a physiologically useful pH window has been finely tuned by the installation of a capping xylylene moiety at the secondary face of the cyclooligosaccharide. This strategy can be exploited advantageously in the design of self-assembling nonviral gene-delivery systems from molecular entities.


Assuntos
Ciclodextrinas/química , DNA/química , Nanoestruturas/química , Animais , Células COS , Chlorocebus aethiops , Dicroísmo Circular , DNA/metabolismo , Dimerização , Concentração de Íons de Hidrogênio , Poliaminas/química , Polieletrólitos , Transfecção
13.
Org Biomol Chem ; 11(41): 7145-54, 2013 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-24057414

RESUMO

Charged chromophores based on heteroaromatic cations were prepared by reaction of alkylazinium salts with N-heteroarylstannanes under Stille conditions. This approach provides easy access to potential single donor D-A(+) chromophores in which the acceptor moiety A(+) is the pyridinium cation and the donors are different π-excessive N-heterocycles. The ß hyperpolarizabilities were measured in hyper-Rayleigh scattering experiments and the experimental data are supported by a theoretical analysis that combines a variety of computational procedures, including density functional theory and correlated Hartree-Fock-based methods. In some chromophores, the absence of a bridge between donor and acceptor fragments increases the NLO properties.

14.
Org Biomol Chem ; 10(8): 1659-69, 2012 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-22241523

RESUMO

Heteroaromatic cations reacted with N-heteroarylacetylenes under Sonogashira conditions to allow easy access to potential single donor D-π-A(+) and V-shaped D-π-A(+)-π-D chromophores, where the acceptor moiety A is the π-deficient pyridinium cation and the donor moiety is represented by different π-excessive N-heterocycles. The ß hyperpolarizabilities were measured using hyper-Rayleigh scattering experiments and the experimental data are supported by a theoretical analysis that combines a variety of computational procedures, including Density Functional Theory (DFT) and correlated Hartree-Fock-based methods (RCIS(D)).

15.
Chem Commun (Camb) ; 56(25): 3669-3672, 2020 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-32115593

RESUMO

Previously unknown 4a-aza-12a-borachrysene has been synthesized in only four steps. The reactions of this BN-embedded PAH with bromine and organolithium compounds proceed with complete regioselectivity, resulting in the formation of nine derivatives. One of these, a phenylalkynyl-substituted derivative, exhibits a remarkably high fluorescence quantum yield (ΦF = 0.68).

16.
ChemMedChem ; 15(19): 1788-1801, 2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-32909701

RESUMO

PTP1B dephosphorylates insulin receptor and substrates to modulate glucose metabolism. This enzyme is a validated therapeutic target for type 2 diabetes, but no current drug candidates have completed clinical trials. Pyrrolo[1,2-a]quinoxalines substituted at positions C1-C4 and/or C7-C8 were found to be nontoxic to cells and good inhibitors in the low- to sub-micromolar range, with the 4-benzyl derivative being the most potent inhibitor (0.24 µm). Some analogues bearing chlorine atoms at C7 and/or C8 kept potency and showed good selectivity compared to TCPTP (selectivity index >40). The most potent inhibitors behaved as insulin mimetics by increasing glucose uptake. The 4-benzyl derivative inhibited insulin receptor substrate 1 and AKT phosphorylation. Molecular docking and molecular dynamics simulations supported a putative binding mode for these compounds to the allosteric α3/α6/α7 pocket, but inconsistent results in enzyme inhibition kinetics were obtained due to the high tendency of these inhibitors to form stable aggregates. Computational calculations supported the druggability of inhibitors.


Assuntos
Inibidores Enzimáticos/farmacologia , Insulina/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Pirróis/farmacologia , Quinoxalinas/farmacologia , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Glucose/metabolismo , Células Hep G2 , Humanos , Camundongos , Modelos Moleculares , Estrutura Molecular , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Pirróis/síntese química , Pirróis/química , Quinoxalinas/síntese química , Quinoxalinas/química , Relação Estrutura-Atividade
17.
J Fluoresc ; 19(3): 449-62, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19067128

RESUMO

Steady-state, time-resolved fluorescence, Circular Dichroism and Molecular Mechanics techniques were used to study the complexation of 1-methyl naphthalenecarboxylate (1MN) with the 2-hydroxylpropyl-alpha-, -beta- and -gammacyclodextrins (HPCDs). The emission spectrum of 1MN shows two bands whose intensity ratios (R) are sensitive to complexation. The stoichiometry, binding constants and thermodynamics parameters upon complexation were obtained from the variation of fluorescence intensity, R, and lifetime averages, [Formula: see text], with [HPCD] and temperature. They were then compared with the ones obtained for the complexation of 1MN with the non-substituted alpha-, beta- and gammaCDs. Like the 1MN:CD complexes, the 1MN:HPCD ones showed 1:1 stoichiometries, but they resulted relatively more stable. Molecular Mechanics calculations in the presence of water allowed us to understand the structure of the complexes and the possible driving forces responsible for the complexation. Geometry agrees with the experimental stoichiometry and the signs of enthalpy and entropy changes. R for the complexes, quenching, fluorescence depolarization measurements and induced circular dichroism spectra also supported the proposed structures.

18.
J Fluoresc ; 19(6): 975-88, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19597975

RESUMO

The thermodynamics of the dimer formation of 2(I),3(I)-O-(o-xylylene)-per-O-Me-gamma-cyclodextrin (XmgammaCD) in aqueous solution was studied by fluorescence techniques, Molecular Mechanics and Molecular Dynamics. Lifetime averages , obtained from fluorescence decay profiles upon excitation of the xylylene appended group, were used as the property sensitive to the association process. The dimerization equilibrium constants (K(D)) were obtained from non-linear regression analysis of the plots of against [XmgammaCD] at several temperatures and they were compared with the values obtained for the counterparts Xmalpha- and XmbetaCDs. The van't Hoff plot allows us to obtain the DeltaH and DeltaS showing that the dimerization process was also entropically disfavoured. Molecular Mechanics as well as Molecular Dynamics calculations in the presence of water were also employed to study the conformational behaviour of isolated XmgammaCDs, the possible structure of the dimers formed and the driving forces involved in such association processes. Results indicate that those conformations where Xy moiety does not block the cavity entrance are favoured. Dimers are preferably formed by head-to-head CD approaching. However, the formation of stable head-to-tail is not dismissed.


Assuntos
gama-Ciclodextrinas/química , Algoritmos , Dimerização , Fluorescência , Modelos Químicos , Modelos Moleculares , Dinâmica não Linear , Conformação Proteica , Multimerização Proteica , Análise de Regressão , Temperatura , Termodinâmica , Água/química
19.
J Phys Chem Lett ; 10(5): 1063-1067, 2019 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-30707586

RESUMO

We report theoretical and experimental evidence showing that photochemical reactivity of a chromophore can be modified by applying mechanical forces via molecular force probes. This mechanical action permits us to modulate main photochemical properties, such as fluorescence yield, excited-state lifetime, or photoisomerization quantum yield. The effect of molecular force probes can be rationalized in terms of simple mechanochemical models, establishing a qualitative framework for understanding the mechanical control of photoreactivity in stilbenes.

20.
Front Chem ; 7: 72, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30873399

RESUMO

The presence of a doubly-linked naphthylene clip at the O-2I and O-3II positions in the secondary ring of ß-cyclodextrin (ßCD) derivatives promoted their self-assembly into head-to-head supramolecular dimers in which the aromatic modules act either as cavity extension walls (if the naphthalene moiety is 1,8-disubstituted) or as folding screens that separate the individual ßCD units (if 2,3-disubstituted). Dimer architecture is governed by the conformational properties of the monomer constituents, as determined by NMR, fluorescence, circular dichroism, and computational techniques. In a second supramolecular organization level, the topology of the assembly directs host-guest interactions and, reciprocally, guest inclusion impacts the stability of the supramolecular edifice. Thus, inclusion of adamantane carboxylate, a well-known ßCD cavity-fitting guest, was found to either preserve the dimeric arrangement, leading to multicomponent species, or elicit dimer disruption. The ensemble of results highlights the potential of the approach to program self-organization and external stimuli responsiveness of CD devices in a controlled manner while keeping full diastereomeric purity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA