Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(13)2023 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-37445771

RESUMO

Parkinson's disease (PD) is a neurodegenerative disorder caused by the progressive loss of dopaminergic (DAergic) neurons in the substantia nigra and the intraneuronal presence of Lewy bodies (LBs), composed of aggregates of phosphorylated alpha-synuclein at residue Ser129 (p-Ser129α-Syn). Unfortunately, no curative treatment is available yet. To aggravate matters further, the etiopathogenesis of the disorder is still unresolved. However, the neurotoxin rotenone (ROT) has been implicated in PD. Therefore, it has been widely used to understand the molecular mechanism of neuronal cell death. In the present investigation, we show that ROT induces two convergent pathways in HEK-293 cells. First, ROT generates H2O2, which, in turn, either oxidizes the stress sensor protein DJ-Cys106-SH into DJ-1Cys106SO3 or induces the phosphorylation of the protein LRRK2 kinase at residue Ser395 (p-Ser395 LRRK2). Once active, the kinase phosphorylates α-Syn (at Ser129), induces the loss of mitochondrial membrane potential (ΔΨm), and triggers the production of cleaved caspase 3 (CC3), resulting in signs of apoptotic cell death. ROT also reduces glucocerebrosidase (GCase) activity concomitant with the accumulation of lysosomes and autophagolysosomes reflected by the increase in LC3-II (microtubule-associated protein 1A/1B-light chain 3-phosphatidylethanolamine conjugate II) markers in HEK-293 cells. Second, the exposure of HEK-293 LRRK2 knockout (KO) cells to ROT displays an almost-normal phenotype. Indeed, KO cells showed neither H2O2, DJ-1Cys106SO3, p-Ser395 LRRK2, p-Ser129α-Syn, nor CC3 but displayed high ΔΨm, reduced GCase activity, and the accumulation of lysosomes and autophagolysosomes. Similar observations are obtained when HEK-293 LRRK2 wild-type (WT) cells are exposed to the inhibitor GCase conduritol-ß-epoxide (CBE). Taken together, these observations imply that the combined development of LRRK2 inhibitors and compounds for recovering GCase activity might be promising therapeutic agents for PD.


Assuntos
Glucosilceramidase , Doença de Parkinson , Humanos , Glucosilceramidase/genética , Rotenona/farmacologia , Rotenona/metabolismo , Células HEK293 , Peróxido de Hidrogênio/metabolismo , alfa-Sinucleína/metabolismo , Doença de Parkinson/metabolismo , Lisossomos/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo
2.
Int J Mol Sci ; 24(10)2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37240306

RESUMO

Alzheimer's disease (AD) is a chronic neurological condition characterized by the severe loss of cholinergic neurons. Currently, the incomplete understanding of the loss of neurons has prevented curative treatments for familial AD (FAD). Therefore, modeling FAD in vitro is essential for studying cholinergic vulnerability. Moreover, to expedite the discovery of disease-modifying therapies that delay the onset and slow the progression of AD, we depend on trustworthy disease models. Although highly informative, induced pluripotent stem cell (iPSCs)-derived cholinergic neurons (ChNs) are time-consuming, not cost-effective, and labor-intensive. Other sources for AD modeling are urgently needed. Wild-type and presenilin (PSEN)1 p.E280A fibroblast-derived iPSCs, menstrual blood-derived menstrual stromal cells (MenSCs), and umbilical cord-derived Wharton Jelly's mesenchymal stromal cells (WJ-MSCs) were cultured in Cholinergic-N-Run and Fast-N-Spheres V2 medium to obtain WT and PSEN 1 E280A cholinergic-like neurons (ChLNs, 2D) and cerebroid spheroids (CSs, 3D), respectively, and to evaluate whether ChLNs/CSs can reproduce FAD pathology. We found that irrespective of tissue source, ChLNs/CSs successfully recapitulated the AD phenotype. PSEN 1 E280A ChLNs/CSs show accumulation of iAPPß fragments, produce eAß42, present TAU phosphorylation, display OS markers (e.g., oxDJ-1, p-JUN), show loss of ΔΨm, exhibit cell death markers (e.g., TP53, PUMA, CASP3), and demonstrate dysfunctional Ca2+ influx response to ACh stimuli. However, PSEN 1 E280A 2D and 3D cells derived from MenSCs and WJ-MSCs can reproduce FAD neuropathology more efficiently and faster (11 days) than ChLNs derived from mutant iPSCs (35 days). Mechanistically, MenSCs and WJ-MSCs are equivalent cell types to iPSCs for reproducing FAD in vitro.


Assuntos
Doença de Alzheimer , Células-Tronco Pluripotentes Induzidas , Células-Tronco Mesenquimais , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Doença de Alzheimer/metabolismo , Neurônios Colinérgicos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Colinérgicos/metabolismo , Presenilina-1/genética , Presenilina-1/metabolismo
3.
Biometals ; 34(1): 49-66, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33098492

RESUMO

Despite some advances in the treatment of acute lymphoblastic (ALL) and myeloid leukemia (AML) in recent years, there is still a prominent percentage of pediatric patients with a reduced overall prognosis. Therefore, other therapeutic approaches are needed to treat those patients. In the present study, we report that the metal chelator TPEN affected ΔΨm and DNA content in isolated CD34+ refractory cells from bone marrow ALL (n = 7; B-cell, n = 4; T-cell, n = 3) and AML (n = 3) pediatric patients. Furthermore, TPEN induced oxidation of hydrogen peroxide (H2O2) sensor protein DJ-1, induced up-regulation of BH3-only pro-apoptotic protein PUMA, transcription factor p53 and activated the executor protease CASPASE-3 as apoptosis markers, and reduced the reactivity of the cellular proliferating marker Ki-67 in all acute leukemic groups, and reduced the phosphorylation of c-ABL protein signal in an AML case. Remarkably, bone marrow cells from non-leukemic patients' cells (n = 2) displayed neither loss of ΔΨm nor loss of DNA content when exposed to TPEN. We conclude that TPEN selectively induces apoptosis in acute leukemic cells via reactive oxygen species (ROS) signaling mechanism. Understanding the pathways of TPEN-induced cell death may provide insight into more effective therapeutic ROS-inducing anticancer agents.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Etilenodiaminas/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico , Adolescente , Antineoplásicos/química , Criança , Pré-Escolar , Etilenodiaminas/química , Feminino , Humanos , Lactente , Masculino
4.
J Pineal Res ; 64(3)2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29247557

RESUMO

Head and neck squamous cell carcinoma (HNSCC) clearly involves activation of the Akt mammalian target of rapamycin (mTOR) signalling pathway. However, the effectiveness of treatment with the mTOR inhibitor rapamycin is often limited by chemoresistance. Melatonin suppresses neoplastic growth via different mechanisms in a variety of tumours. In this study, we aimed to elucidate the effects of melatonin on rapamycin-induced HNSCC cell death and to identify potential cross-talk pathways. We analysed the dose-dependent effects of melatonin in rapamycin-treated HNSCC cell lines (Cal-27 and SCC-9). These cells were treated with 0.1, 0.5 or 1 mmol/L melatonin combined with 20 nM rapamycin. We further examined the potential synergistic effects of melatonin with rapamycin in Cal-27 xenograft mice. Relationships between inhibition of the mTOR pathway, reactive oxygen species (ROS), and apoptosis and mitophagy reportedly increased the cytotoxic effects of rapamycin in HNSCC. Our results demonstrated that combined treatment with rapamycin and melatonin blocked the negative feedback loop from the specific downstream effector of mTOR activation S6K1 to Akt signalling, which decreased cell viability, proliferation and clonogenic capacity. Interestingly, combined treatment with rapamycin and melatonin-induced changes in mitochondrial function, which were associated with increased ROS production, increasing apoptosis and mitophagy. This led to increase cell death and cellular differentiation. Our data further indicated that melatonin administration reduced rapamycin-associated toxicity to healthy cells. Overall, our findings suggested that melatonin could be used as an adjuvant agent with rapamycin, improving effectiveness while minimizing its side effects.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma de Células Escamosas/patologia , Neoplasias de Cabeça e Pescoço/patologia , Mitofagia/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Melatonina/farmacologia , Camundongos , Camundongos Nus , Proteínas Proto-Oncogênicas c-akt/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sirolimo/farmacologia , Carcinoma de Células Escamosas de Cabeça e Pescoço , Serina-Treonina Quinases TOR/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
5.
J Pineal Res ; 63(2)2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28423196

RESUMO

Neural stem cells (NSCs) are regarded as a promising therapeutic approach to protecting and restoring damaged neurons in neurodegenerative diseases (NDs) such as Parkinson's disease and Alzheimer's disease (PD and AD, respectively). However, new research suggests that NSC differentiation is required to make this strategy effective. Several studies have demonstrated that melatonin increases mature neuronal markers, which reflects NSC differentiation into neurons. Nevertheless, the possible involvement of mitochondria in the effects of melatonin during NSC differentiation has not yet been fully established. We therefore tested the impact of melatonin on NSC proliferation and differentiation in an attempt to determine whether these actions depend on modulating mitochondrial activity. We measured proliferation and differentiation markers, mitochondrial structural and functional parameters as well as oxidative stress indicators and also evaluated cell transplant engraftment. This enabled us to show that melatonin (25 µM) induces NSC differentiation into oligodendrocytes and neurons. These effects depend on increased mitochondrial mass/DNA/complexes, mitochondrial respiration, and membrane potential as well as ATP synthesis in NSCs. It is also interesting to note that melatonin prevented oxidative stress caused by high levels of mitochondrial activity. Finally, we found that melatonin enriches NSC engraftment in the ND mouse model following transplantation. We concluded that a combined therapy involving transplantation of NSCs pretreated with pharmacological doses of melatonin could efficiently restore neuronal cell populations in PD and AD mouse models depending on mitochondrial activity promotion.


Assuntos
Doença de Alzheimer , Diferenciação Celular/efeitos dos fármacos , Sobrevivência de Enxerto/efeitos dos fármacos , Melatonina/farmacologia , Mitocôndrias/metabolismo , Células-Tronco Neurais , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/terapia , Animais , Antígenos de Diferenciação/biossíntese , Masculino , Camundongos , Camundongos Transgênicos , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia , Células-Tronco Neurais/transplante , Neurônios/metabolismo , Neurônios/patologia
6.
Neurochem Res ; 41(10): 2675-2692, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27394417

RESUMO

Leucine-rich repeat kinase 2 (LRRK2) has been implicated in oxidative stress (OS) and neurodegeneration in Parkinson's disease (PD). However, the pathophysiological mechanism of the LRRK2 kinase in neurons under stress stimuli is not yet understood. We demonstrate that rotenone (ROT), a mitochondria complex I inhibitor frequently used to generate in vitro and in vivo experimental models of PD, induces LRRK2 phosphorylation at serine 935 p-(S935) concomitant with cell death in nerve-like differentiated cells (NLCs). Indeed, ROT (50 µM) at 6 h exposure significantly increased reactive oxygen species (ROS) (~100 %), p-(S935)-LRRK2 kinase [~2 f(old)-(i)ncrease] level, induced nuclei condensation/fragmentation (16 %), increased the expression of NF-κB (5.6 f-i), p53 (5.3 f-i), c-Jun (5.4 f-i) transcription factors, activated caspase-3 (8.0 f-i) and AIF (6.8 f-i) proteins; but significantly decreased mitochondrial membrane potential (∆Ψm, ~21 %), indicative of apoptosis -a type of regulated cell death process- compared to untreated cells. Strikingly, the LRRK2 kinase inhibitor PF-06447475 (PF-475, 1 µM) protects NLCs against ROT induced noxious effect. The inhibitor not only blocked the p-(S935)-LRRK2 kinase phosphorylation but also completely abolished ROS, and significantly reversed all ROT-induced apoptosis signaling and OS associated markers to comparable control values. We conclude that wild-type LRRK2 may act as a pro-apoptotic factor under OS stimuli. Our findings suggest an association between OS and LRRK2 phosphorylation in the NLCs death process, as PD model. Therefore, the pharmacological inhibition of LRRK2 might help to understand the OS-mediated kinase activation in PD neurodegenerative disorder.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/antagonistas & inibidores , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Doença de Parkinson/metabolismo , Pirimidinas/farmacologia , Pirróis/farmacologia , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Mitocôndrias/metabolismo , Neurônios/metabolismo , Doença de Parkinson/tratamento farmacológico , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo
7.
Anticancer Drugs ; 26(6): 583-98, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25734830

RESUMO

In this study, we investigated the molecular mechanism of doxorubicin (dxr)-induced cytotoxicity on Jurkat cells - a model cell of human acute lymphoblastic leukemia - under normoxic (20% O2) and hypoxic (5% O2) conditions. Using in-cell western analysis, immunofluorescence, flow cytometry analysis, and biochemical inhibitors, we evaluated several oxidative stress (OS) and cell death markers. It was found that dxr (5-100 µmol/l) induced apoptosis by OS mechanisms involving DNA fragmentation (8-48%), loss of mitochondrial membrane potential (ΔΨm, 33-92%), and H2O2 production (15-42%) under normoxia. In addition, dxr (10 µmol/l) induced activation and/or nuclei translocation of NF-κB (6.6, 1.6-fold increase), p53 (4.3, 3.1 f), c-Jun (9.5, 5.0 f), apoptosis-inducing factor (AIF) (1.9, 3.9 f), caspase-3 (3.7, 1.9 f), overexpression of Parkin (2.1, 1.2 f)/PINK-1 (2.1 f) proteins, and reduced DJ-1 levels by half compared with untreated cells under normoxia, according to immunofluorescence and in-cell western analysis, respectively. In contrast, dxr (10 µmol/l) could not induce apoptosis in Jurkat cells under hypoxia. Effectively, dxr significantly reduced DNA fragmentation (6%), expression levels of cell death (e.g. p53, c-Jun, caspase-3, AIF), and OS (e.g. Parkin) markers, whereas it increased ΔΨm, hypoxia-inducible factor 1-α (HIF-1α, 3.1, 2.3 f), NF-κB (6.8, 2.0 f), and DJ-1 (1.3, 1.0 f) levels. This investigation suggests that dxr might efficiently eliminate acute lymphoblastic leukemia cells by OS-induced apoptosis under normoxic conditions through a minimal completeness of cell death signaling (i.e. mitochondria-caspase-3/AIF-dependent pathways) and through a direct DNA damage process. However, hypoxic conditions may reduce the effectiveness of dxr toxicity.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Doxorrubicina/farmacologia , Mitocôndrias/efeitos dos fármacos , Acetilcisteína/metabolismo , Fator de Indução de Apoptose/metabolismo , Caspase 3/metabolismo , Hipóxia Celular , Humanos , Peróxido de Hidrogênio/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Células Jurkat , Potencial da Membrana Mitocondrial , Mitocôndrias/metabolismo , NF-kappa B/metabolismo , Proteínas Oncogênicas/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras , Proteína Desglicase DJ-1 , Proteínas Quinases/metabolismo , Proteínas Proto-Oncogênicas c-jun/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
8.
Neurotox Res ; 42(3): 28, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38842585

RESUMO

Parkinson's disease with dementia (PDD) is a neurological disorder that clinically and neuropathologically overlaps with Parkinson's disease (PD) and Alzheimer's disease (AD). Although it is assumed that alpha-synuclein ( α -Syn), amyloid beta (A ß ), and the protein Tau might synergistically induce cholinergic neuronal degeneration, presently the pathological mechanism of PDD remains unclear. Therefore, it is essential to delve into the cellular and molecular aspects of this neurological entity to identify potential targets for prevention and treatment strategies. Cholinergic-like neurons (ChLNs) were exposed to rotenone (ROT, 10 µ M) for 24 h. ROT provokes loss of Δ Ψ m , generation of reactive oxygen species (ROS), phosphorylation of leucine-rich repeated kinase 2 (LRRK2 at Ser935) concomitantly with phosphorylation of α -synuclein ( α -Syn, Ser129), induces accumulation of intracellular A ß (iA ß ), oxidized DJ-1 (Cys106), as well as phosphorylation of TAU (Ser202/Thr205), increases the phosphorylation of c-JUN (Ser63/Ser73), and increases expression of proapoptotic proteins TP53, PUMA, and cleaved caspase 3 (CC3) in ChLNs. These neuropathological features resemble those reproduced in presenilin 1 (PSEN1) E280A ChLNs. Interestingly, anti-oxidant and anti-amyloid cannabidiol (CBD), JNK inhibitor SP600125 (SP), TP53 inhibitor pifithrin- α (PFT), and LRRK2 kinase inhibitor PF-06447475 (PF475) significantly diminish ROT-induced oxidative stress (OS), proteinaceous, and cell death markers in ChLNs compared to naïve ChLNs. In conclusion, ROT induces p- α -Syn, iA ß , p-Tau, and cell death in ChLNs, recapitulating the neuropathology findings in PDD. Our report provides an excellent in vitro model to test for potential therapeutic strategies against PDD. Our data suggest that ROT induces a neuropathologic phenotype in ChLNs similar to that caused by the mutation PSEN1 E280A.


Assuntos
Neurônios Colinérgicos , Rotenona , Rotenona/toxicidade , Neurônios Colinérgicos/efeitos dos fármacos , Neurônios Colinérgicos/metabolismo , Neurônios Colinérgicos/patologia , Animais , Doença de Parkinson/patologia , Doença de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , Demência/patologia , Demência/metabolismo , Fenótipo , Espécies Reativas de Oxigênio/metabolismo , Humanos , Células Cultivadas
9.
Front Mol Neurosci ; 17: 1373568, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38571814

RESUMO

A patient with the PSEN1 E280A mutation and homozygous for APOE3 Christchurch (APOE3Ch) displayed extreme resistance to Alzheimer's disease (AD) cognitive decline and tauopathy, despite having a high amyloid burden. To further investigate the differences in biological processes attributed to APOE3Ch, we generated induced pluripotent stem (iPS) cell-derived cerebral organoids from this resistant case and a non-protected control, using CRISPR/Cas9 gene editing to modulate APOE3Ch expression. In the APOE3Ch cerebral organoids, we observed a protective pattern from early tau phosphorylation. ScRNA sequencing revealed regulation of Cadherin and Wnt signaling pathways by APOE3Ch, with immunostaining indicating elevated ß-catenin protein levels. Further in vitro reporter assays unexpectedly demonstrated that ApoE3Ch functions as a Wnt3a signaling enhancer. This work uncovered a neomorphic molecular mechanism of protection of ApoE3 Christchurch, which may serve as the foundation for the future development of protected case-inspired therapeutics targeting AD and tauopathies.

10.
Nutr Cancer ; 65(1): 99-109, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23368919

RESUMO

Reactivation of apoptosis appears as an ultimate goal to eliminate cancer cells. By using light and fluorescent microscopy, flow cytometry, immunohistochemistry staining, DNA fragmentation analysis, and pharmacological inhibition, we provide evidence that 2 pathways of cell death induced by glucose-starvation (GS)/oxidative stress (OS) run in parallel: apoptosis-inducing factor (AIF)-dependent and caspase-3 dependent mechanisms. However, the supremacy of 1 pathway over the other one relies on the availability of glucose, which is essential for the proper functioning of antioxidant cellular systems. It is shown that GS generates superoxide anion radical (O(2)(-))/hydrogen peroxide (H(2)O(2)), which are linked to the death ~45%-70% cells by AIF/mitochondria depolarization/chromatin condensation pathway and ~15%-30% death by nuclear factor-kappa B/p53/c-Jun/c-Jun N-terminal kinase /mitochondria depolarization/caspase-3 activation/DNA fragmentation mechanism at 24-48 h. Remarkably, chromatin condensation/nuclei fragmentation appeared to occur partially independent of the loss of the mitochondrial transmembrane potential (ΔΨ(m)) and plasma membrane damage. Interestingly, signaling inhibitors, antioxidants, or glucose protected cells if added immediately to culture devoid of glucose (P < 0.001), but only vitamin E and glucose significantly rescued cells at 3 h of GS compared to control. Taken together these data suggest that glucose deprivation might efficiently eliminate leukemia cells via apoptosis.


Assuntos
Apoptose/fisiologia , Caspase 3/metabolismo , Glucose/deficiência , Leucemia de Células T/patologia , Antioxidantes/farmacologia , Fator de Indução de Apoptose/metabolismo , Cromatina/metabolismo , Fragmentação do DNA , Humanos , Peróxido de Hidrogênio/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Células Jurkat/efeitos dos fármacos , Células Jurkat/metabolismo , Potencial da Membrana Mitocondrial , NF-kappa B/metabolismo , Superóxidos/metabolismo , Vitamina E/farmacologia
11.
J Alzheimers Dis ; 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36846998

RESUMO

BACKGROUND: Familial Alzheimer's disease (FAD) is caused by mutations in one or more of 3 genes known as A ß PP, PSEN1, and PSEN2. There are currently no effective therapies for FAD. Hence, novel therapeutics are needed. OBJECTIVE: To analyze the effect of treatment with a combination of epigallocatechin-3-gallate (EGCG) and Melatonin (N-acetyl-5-methoxytryptamine, aMT) in a cerebral spheroid (CS) 3D in vitro model of PSEN 1 E280A FAD. METHODS: We developed a CS in vitro model based on menstrual stromal cells derived from wild-type (WT) and mutant PSEN1 E280A menstrual blood cultured in Fast-N-Spheres V2 medium. RESULTS: Beta-tubulin III, choline acetyltransferase, and GFAP in both WT and mutant CSs spontaneously expressed neuronal and astroglia markers when grown in Fast-N-Spheres V2 medium for 4 or 11 days. Mutant PSEN1 CSs had significantly increased levels of intracellular AßPP fragment peptides and concomitant appearance of oxidized DJ-1 as early as 4 days, and phosphorylated tau, decreased ΔΨm, and increased caspase-3 activity were observed on Day 11. Moreover, mutant CSs were unresponsive to acetylcholine. Treatment with a combination of EGCG and aMT decreased the levels of all typical pathological markers of FAD more efficiently than did EGCG or aMT alone, but aMT failed to restore Ca2 + influx in mutant CSs and decreased the beneficial effect of EGCG on Ca2 + influx in mutant CSs. CONCLUSION: Treatment with a combination of EGCG and aMT can be of high therapeutic value due to the high antioxidant capacity and anti-amyloidogenic effect of both compounds.

12.
Sci Rep ; 13(1): 12833, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37553376

RESUMO

Familial Alzheimer's disease (FAD) is a complex neurodegenerative disorder for which there are no therapeutics to date. Several mutations in presenilin 1 (PSEN 1), which is the catalytic component of γ-secretase complex, are causal of FAD. Recently, the p.Ile416Thr (I416T) PSEN 1 mutation has been reported in large kindred in Colombia. However, cell and molecular information from I416T mutation is scarce. Here, we demonstrate that menstrual stromal cells (MenSCs)-derived planar (2D) PSEN 1 I416T cholinergic-like cells (ChLNS) and (3D) cerebral spheroids (CSs) reproduce the typical neuropathological markers of FAD in 4 post-transdifferentiating or 11 days of transdifferentiating, respectively. The models produce intracellular aggregation of APPß fragments (at day 4 and 11) and phosphorylated protein TAU at residue Ser202/Thr205 (at day 11) suggesting that iAPPß fragments precede p-TAU. Mutant ChLNs and CSs displayed DJ-1 Cys106-SO3 (sulfonic acid), failure of mitochondria membrane potential (ΔΨm), and activation of transcription factor c-JUN and p53, expression of pro-apoptotic protein PUMA, and activation of executer protein caspase 3 (CASP3), all markers of cell death by apoptosis. Moreover, we found that both mutant ChLNs and CSs produced high amounts of extracellular eAß42. The I416T ChLNs and CSs were irresponsive to acetylcholine induced Ca2+ influx compared to WT. The I416T PSEN 1 mutation might work as dominant-negative PSEN1 mutation. These findings might help to understanding the recurring failures of clinical trials of anti-eAß42, and support the view that FAD is triggered by the accumulation of other intracellular AßPP metabolites, rather than eAß42.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Presenilina-1/genética , Presenilina-1/metabolismo , Neurônios/metabolismo , Colinérgicos , Mutação
13.
ACS Chem Neurosci ; 14(11): 2159-2171, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37220279

RESUMO

Parkinson's disease (PD), a progressive neurodegenerative movement disorder, has reached pandemic status worldwide. This neurologic disorder is caused primarily by the specific deterioration of dopaminergic (DAergic) neurons in the substantia nigra pars compacta (SNc). Unfortunately, there are no therapeutic agents that slow or delay the disease progression. Herein, menstrual stromal cell-derived dopamine-like neurons (DALNs) intoxicated with paraquat (PQ2+)/maneb (MB) were used as a model system to elucidate the mechanism by which CBD protects the neural cell from apoptosis in vitro. According to immunofluorescence microscopy, flow cytometry, cell-free assay, and molecular docking analysis, we demonstrate that CBD offers protection to DALNs against PQ2+ (1 mM)/MB (50 µM)-induced oxidative stress (OS) by simultaneously (i) decreasing reactive oxygen species (ROS: O2•-, H2O2), (ii) maintaining the mitochondrial membrane potential (ΔΨm), (iii) directly binding to stress sensor protein DJ-1, thereby blunting its oxidation from DJ-1CYS106-SH into DJ-1CYS106-SO3, and (iv) directly binding to pro-apoptotic protease protein caspase 3 (CASP3), thereby disengaging neuronal dismantling. Furthermore, the protective effect of CBD on DJ-1 and CASP3 was independent of CB1 and CB2 receptor signaling. CBD also re-established the Ca2+ influx in DALNs as a response to dopamine (DA) stimuli under PQ2+/MB exposure. Because of its powerful antioxidant and antiapoptotic effects, CBD offers potential therapeutic utility in the treatment of PD.


Assuntos
Canabidiol , Maneb , Doença de Parkinson , Humanos , Paraquat/toxicidade , Paraquat/metabolismo , Maneb/toxicidade , Maneb/metabolismo , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Canabidiol/farmacologia , Canabidiol/metabolismo , Caspase 3/metabolismo , Dopamina/metabolismo , Receptores de Canabinoides/metabolismo , Peróxido de Hidrogênio/farmacologia , Simulação de Acoplamento Molecular , Morte Celular , Neurônios Dopaminérgicos/metabolismo , Estresse Oxidativo
14.
Med Oncol ; 39(7): 109, 2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35578067

RESUMO

TPEN and TPGS have recently shown selective cytotoxic effects in vitro and ex vivo leukemia cells. In this study, we aimed to test the synergistic effect of combined TPEN and TPGS agents (thereafter, T2 combo) on Jurkat (clone-E61), K562, Ba/F3, and non-leukemia peripheral blood lymphocytes (PBL). The ED50 doses (i.e., TPEN ED50: 3.2 µM and TPGS ED50: 34 µM, potency ratio R = 10.62 = TPGS (ED50)/TPEN (ED50)) were identified as dose-effect curve (%DNA fragmentation (sub-G1 phase) versus agent concentration). The most effective synergistic doses were determined according to isobole analysis. The apoptotic and oxidative stress effects of combined doses (TPEN 0.1, 0.5, 1 µM) and TPGS (5, 10, 20 µM)) were evaluated by DNA fragmentation (sub-G1 phase), mitochondrial membrane potential, oxidation of stress sensor protein DJ-1, and activation of executer protein CASPASE-3. They testified to the synergistic effect of the T2 combo (e.g., TPEN 1: TPGS 20, combination index (CI) 0.90 < 1; 1/3.2+ 20/34, > 90% induced apoptosis) in all 3 cell lines. As proof of principle, we challenged complete bone marrow (n = 5) or isolated cells from bone marrow (n = 3) samples from acute pediatric acute B-cell patients and found that T2 combo (1:20; 10:200) dramatically reduced (- 50%) the CD34+/CD19+cell population and increased significantly CD19+/CASP-3+ positive B-ALL cells up to 960%. The T2 combo neither induced DNA fragmentation, altered ΔΨm, nor induced oxidation of stress sensor protein DJ-1, nor activated CASP-3 in PBL cells. We conclude that by using different combinations of TPEN and TPGS, a more efficient treatment strategy can be developed for leukemia patients.


Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva , Leucemia Mieloide Aguda , Apoptose , Criança , Etilenodiaminas , Humanos , Células Jurkat , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Transdução de Sinais , Vitamina E
15.
Biochem Biophys Rep ; 31: 101300, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35755270

RESUMO

Background: Acute lymphoblastic leukemia (ALL) is still incurable hematologic neoplasia in an important percentage of patients. Therefore, new therapeutic approaches need to be developed. Methods: To evaluate the cellular effect of cell-penetrating peptides (C-PP) on leukemia cells, Jurkat cells -a model of ALL were exposed to increasing concentration (50-500 µM) Aß25-35, R7-G-Aß25-35 and Aß25-35-G-R7 peptide for 24 h. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, flow cytometry (FC), and fluorescent microscopy (FM) analysis were used to assess metabolic viability, cell cycle and proliferation, mitochondria functionality, oxidative stress, and cell death markers. Results: We report for the first time that the R7-G-Aß25-35, but not Aß25-35 peptide, induced selective cell death in Jurkat cells more efficiently than the Aß25-35-G-R7 peptide. Indeed, R7-G-Aß25-35 (200 µM) altered the metabolic activity (-25%), arrested the cell cycle in the G2/M-phase (15%), and induced a significant reduction of cellular proliferation (i.e., -74% reduction of Ki-67 nuclei reactivity). Moreover, R7-G-Aß25-35 induced the dissipation of mitochondrial membrane potential (ΔΨm, 51%) and produced an important amount of reactive oxygen species (ROS, 75% at 8 h) in Jurkat cells. The exposure of cells to antioxidant/cytoprotectant N-acetylcysteine (NAC) did not prevent R7-G-Aß25-35 from a loss of ΔΨm in Jurkat cells. The peptide was also unable to activate the executer CASPASE-3, thereby preserving the integrity of the cellular DNA corroborated by the fact that the caspase-3 inhibitor NSCI was unable to protect cells from R7-G-Aß25-35 -induced cell damage. Further analysis showed that the R7-G-Aß25-35 peptide is specifically localized at the outer mitochondria membrane (OMM) according to colocalization with the protein translocase TOMM20. Additionally, the cytotoxic effect of the poly-R7 peptide resembles the toxic action of the uncoupler FCCP, mitocan oligomycin, and rotenone in Jurkat cells. Importantly, the R7-G-Aß25-35 peptide was innocuous to menstrual mesenchymal stromal cells (MenSC) -normal non-leukemia proliferative cells. Conclusion: Our findings demonstrated that the cationic Aß peptide possesses specific anti-leukemia activity against Jurkat cells through oxidative stress (OS)- and CASPASE-3-independent mechanism but fast mitochondria depolarization.

16.
Med Oncol ; 40(1): 15, 2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36352172

RESUMO

Acute lymphoblastic leukemia (ALL) is hematological neoplasia that affects human beings from early life to adulthood. Although ALL treatment has been effective, an important percentage of ALL patients are resilient to treatment. Therefore, there is an urgent need for testing a new combination of compounds for the treatment of this disease. Recently, combined TPEN and TPGS (T2 combo) have shown selective cytotoxic effects in vitro leukemia cells such as Jurkat, K562, and Ba/F3 cells. In this study, we aimed to test the effect of combined TPEN and TPGS agents (T2 combo) at a fixed dose (TPEN 5 mg/kg: TPGS 100 mg/kg) on leukemic Ba/F3-BCR-ABL P210 BALB-c mice model. We found that 4 successive 2-day apart intravenous injections of T2 combo showed a statistically significant reduction of Ba/F3 BCR-ABL leukemia cells (- 69%) in leukemia BALB/c mice (n = 6) compared to untreated leukemia group (n = 6). Moreover, the T2 combo was innocuous to non-leukemia BALB/c mice (n = 3) compared to untreated non-leukemia mice (control, n = 3). After treatments (day 42), all mice were left to rest until day 50. Outstandingly, the leukemia BALB/c mice treated with the T2 combo showed a lower percentage of Ba/F3-BCR-ABL P210 cells (- 84%) than untreated leukemia BALB/c mice. Furthermore, treatment of leukemia and non-leukemia mice with T2 combo showed no significant tissue alteration/damage according to the histopathological analysis of brain, heart, liver, kidney, and spleen samples; however, T2 combo significantly reduced the number of leukocytes in the bone marrow of treated leukemia mice. We conclude that the T2 combo specifically affects leukemia cells but no other tissue/organs. Therefore, we anticipate that the T2 combo might be a potential pro-oxidant combination for the treatment of leukemia patients.


Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Camundongos , Animais , Adulto , Proteínas de Fusão bcr-abl , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Cromossomo Filadélfia , Camundongos Endogâmicos BALB C
17.
Biomolecules ; 11(12)2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34944489

RESUMO

Alzheimer's disease (AD) is a complex neurodegenerative disease characterized by functional disruption, death of cholinergic neurons (ChNs) because of intracellular and extracellular Aß aggregates, and hyperphosphorylation of protein TAU (p-TAU). To date, there are no efficient therapies against AD. Therefore, new therapies for its treatment are in need. The goal of this investigation was to evaluate the effect of the polyphenol epigallocatechin-3-gallate (EGCG) on cholinergic-like neurons (ChLNs) bearing the mutation E280A in PRESENILIN 1 (PSEN1 E280A). To this aim, wild-type (WT) and PSEN1 E280A ChLNs were exposed to EGCG (5-50 µM) for 4 days. Untreated or treated neurons were assessed for biochemical and functional analysis. We found that EGCG (50 µM) significantly inhibited the aggregation of (i)sAPPßf, blocked p-TAU, increased ∆Ψm, decreased oxidation of DJ-1 at residue Cys106-SH, and inhibited the activation of transcription factor c-JUN and P53, PUMA, and CASPASE-3 in mutant ChLNs compared to WT. Although EGCG did not reduce (e)Aß42, the polyphenol reversed Ca2+ influx dysregulation as a response to acetylcholine (ACh) stimuli in PSEN1 E280A ChLNs, inhibited the activation of transcription factor NF-κB, and reduced the secretion of pro-inflammatory IL-6 in wild-type astrocyte-like cells (ALCs) when exposed to mutant ChLNs culture supernatant. Taken together, our findings suggest that the EGCG might be a promising therapeutic approach for the treatment of FAD.


Assuntos
Doença de Alzheimer/genética , Peptídeos beta-Amiloides/química , Catequina/análogos & derivados , Neurônios Colinérgicos/citologia , Presenilina-1/genética , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/efeitos dos fármacos , Peptídeos beta-Amiloides/toxicidade , Catequina/farmacologia , Células Cultivadas , Neurônios Colinérgicos/efeitos dos fármacos , Neurônios Colinérgicos/metabolismo , Feminino , Redes Reguladoras de Genes/efeitos dos fármacos , Humanos , Peróxido de Hidrogênio/metabolismo , Microscopia de Fluorescência , Modelos Biológicos , Mutação , Agregados Proteicos/efeitos dos fármacos
18.
J Alzheimers Dis ; 82(s1): S359-S378, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33252082

RESUMO

BACKGROUND: Alzheimer's disease (AD) is characterized by structural damage, death, and functional disruption of cholinergic neurons (ChNs) as a result of intracellular amyloid-ß (Aß) aggregation, extracellular neuritic plaques, and hyperphosphorylation of protein tau (p-Tau) overtime. OBJECTIVE: To evaluate the effect of the synthetic cannabinoid CP55940 (CP) on PSEN1 E280A cholinergic-like nerve cells (PSEN1 ChLNs)-a natural model of familial AD. METHODS: Wild type (WT) and PSEN1 ChLNs were exposed to CP (1µM) only or in the presence of the CB1 and CB2 receptors (CB1Rs, CB2Rs) inverse agonist SR141716 (1µM) and SR144528 (1µM) respectively, for 24 h. Untreated or treated neurons were assessed for biochemical and functional analysis. RESULTS: CP in the presence of both inverse agonists (hereafter SR) almost completely inhibits the aggregation of intracellular sAßPPßf and p-Tau, increases ΔΨm, decreases oxidation of DJ-1Cys106-SH residue, and blocks the activation of c-Jun, p53, PUMA, and caspase-3 independently of CB1Rs signaling in mutant ChLNs. CP also inhibits the generation of reactive oxygen species partially dependent on CB1Rs. Although CP reduced extracellular Aß42, it was unable to reverse the Ca2+ influx dysregulation as a response to acetylcholine stimuli in mutant ChLNs. Exposure to anti-Aß antibody 6E10 (1:300) in the absence or presence of SR plus CP completely recovered transient [Ca2+]i signal as a response to acetylcholine in mutant ChLNs. CONCLUSION: Taken together our findings suggest that the combination of cannabinoids, CB1Rs inverse agonists, and anti-Aß antibodies might be a promising therapeutic approach for the treatment of familial AD.


Assuntos
Doença de Alzheimer/metabolismo , Neurônios Colinérgicos/metabolismo , Cicloexanóis/administração & dosagem , Presenilina-1/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Animais , Neurônios Colinérgicos/efeitos dos fármacos , Neurônios Colinérgicos/patologia , Sistemas de Liberação de Medicamentos/métodos , Humanos , Imunossupressores/administração & dosagem , Presenilina-1/genética , Receptor CB1 de Canabinoide/agonistas , Receptor CB1 de Canabinoide/genética
19.
Mol Neurobiol ; 58(10): 5194-5209, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34269964

RESUMO

Human menstrual blood-derived mesenchymal stromal cells (MenSCs) have become not only an important source of stromal cells for cell therapy but also a cellular source for neurologic disorders in vitro modeling. By using culture protocols originally developed in our laboratory, we show that MenSCs can be converted into floating neurospheres (NSs) using the Fast-N-Spheres medium for 24-72 h and can be transdifferentiated into functional dopaminergic-like (DALNs, ~ 26% TH + /DAT + flow cytometry) and cholinergic-like neurons (ChLNs, ~ 46% ChAT + /VAChT flow cytometry) which responded to dopamine- and acetylcholine-triggered neuronal Ca2+ inward stimuli when cultured with the NeuroForsk and the Cholinergic-N-Run medium, respectively in a timely fashion (i.e., 4-7 days). Here, we also report a direct transdifferentiation method to induce MenSCs into functional astrocyte-like cells (ALCs) by incubation of MenSCs in commercial Gibco® Astrocyte medium in 7 days. The MSC-derived ALCs (~ 59% GFAP + /S100ß +) were found to respond to glutamate-induced Ca2+ inward stimuli. Altogether, these results show that MenSCs are a reliable source to obtain functional neurogenic cells to further investigate the neurobiology of neurologic disorders.


Assuntos
Linhagem da Célula/fisiologia , Transdiferenciação Celular/fisiologia , Neurônios Colinérgicos/fisiologia , Neurônios Dopaminérgicos/fisiologia , Menstruação/fisiologia , Células-Tronco Mesenquimais/fisiologia , Adolescente , Adulto , Células Cultivadas , Feminino , Humanos , Adulto Jovem
20.
PLoS One ; 15(5): e0221669, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32437347

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive memory loss and cognitive disturbance as a consequence of the loss of cholinergic neurons in the brain, neuritic plaques and hyperphosphorylation of TAU protein. Although the underlying mechanisms leading to these events are unclear, mutations in presenilin 1 (PSEN1), e.g., E280A (PSEN1 E280A), are causative factors for autosomal dominant early-onset familial AD (FAD). Despite advances in the understanding of the physiopathology of AD, there are no efficient therapies to date. Limitations in culturing brain-derived live neurons might explain the limited effectiveness of AD research. Here, we show that mesenchymal stromal (stem) cells (MSCs) can be used to model FAD, providing novel opportunities to study cellular mechanisms and to establish therapeutic strategies. Indeed, we cultured MSCs with the FAD mutation PSEN1 E280A and wild-type (WT) PSEN1 from umbilical cords and characterized the transdifferentiation of these cells into cholinergic-like neurons (ChLNs). PSEN1 E280A ChLNs but not WT PSEN1 ChLNs exhibited increased intracellular soluble amyloid precursor protein (sAPPf) fragments and extracellular Aß42 peptide and TAU phosphorylation (at residues Ser202/Thr205), recapitulating the molecular pathogenesis of FAD caused by mutant PSEN1. Furthermore, PSEN1 E280A ChLNs presented oxidative stress (OS) as evidenced by the oxidation of DJ-1Cys106-SH into DJ-1Cys106-SO3 and the detection of DCF-positive cells and apoptosis markers such as activated pro-apoptosis proteins p53, c-JUN, PUMA and CASPASE-3 and the concomitant loss of the mitochondrial membrane potential and DNA fragmentation. Additionally, mutant ChLNs displayed Ca2+ flux dysregulation and deficient acetylcholinesterase (AChE) activity compared to control ChLNs. Interestingly, the inhibitor JNK SP600125 almost completely blocked TAU phosphorylation. Our findings demonstrate that FAD MSC-derived cholinergic neurons with the PSEN1 E280A mutation provide important clues for the identification of targetable pathological molecules.


Assuntos
Doença de Alzheimer , Neurônios Colinérgicos , Células-Tronco Mesenquimais , Presenilina-1 , Cordão Umbilical , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Secretases da Proteína Precursora do Amiloide/metabolismo , Apoptose , Ácido Aspártico Endopeptidases/metabolismo , Cálcio/metabolismo , Neurônios Colinérgicos/metabolismo , Neurônios Colinérgicos/patologia , Humanos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia , Mutação , Estresse Oxidativo , Presenilina-1/genética , Presenilina-1/metabolismo , Cordão Umbilical/metabolismo , Cordão Umbilical/patologia , Proteínas tau/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA