Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Environ Manage ; 256: 109873, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-31822455

RESUMO

The pollutant removal performance of traditional horizontal subsurface flow (HSSF) constructed wetlands (CWs) is limited because of the dissolved oxygen (DO) supply is insufficient. The aeration of HSSF CWs usually improves their pollutant removal performance, but a high DO induces the accumulation of nitrate-nitrogen (NO3--N) and suppresses the improvement of total nitrogen (TN) removal. In this study, an integrated solution that involved in-tank front aeration and internal recirculation (FAIR) was used to improve the pollutant removal performance of HSSF CWs. Based on the experimental results, the FAIR system significantly increased the removal efficiencies of biochemical oxygen demand (BOD) from 53.8-76.0% to 82.0-91.7% and reduced the BOD concentration in the effluent to below 10 mg L-1. The removal efficiency of ammonia-nitrogen (NH3-N) increased from 15.1-78.3% to 98.5-98.6% while the removal efficiencies of the total Kjeldahl nitrogen (TKN) of the control and FAIR HSSF CWs were 18.2-77.1% and 93.5-94.3%, respectively. HSSF CWs with FAIR outperformed aerated HSSF CWs in the removal of NH3-N and TKN. The effects of two recirculation flow ratios (Rr = recirculation flow rate/influent flow rate), 14.3 and 3.0, on the improvement of pollutant removal performance were investigated. The lower Rr did not significantly affect the improvement of BOD, NH3-N, and TKN, but a higher Rr resulted in more severe accumulation of NO3--N. The removal efficiency of TN in control HSSF CWs ranged from 20.4% to 75.5%, and in the FAIR HSSF CW was 71.6% for Rr = 14.3 and 81.3% for Rr = 3.0. However, the FAIR system did not enhance the removal performance of total phosphorus, suggesting that the DO level and internal recirculation were not dominant mechanisms for the removal of phosphorous. The easy maintenance of the FAIR system made it a superior modification for improving the pollutant removal performance of HSSF CWs.


Assuntos
Poluentes Ambientais , Áreas Alagadas , Amônia , Nitrogênio , Fósforo , Eliminação de Resíduos Líquidos
2.
Artigo em Inglês | MEDLINE | ID: mdl-24410685

RESUMO

The effectiveness of electrodialysis (ED) in removing inorganic arsenic (As) from aqueous solution was investigated. A tailor-made ED stack was used to perform current-voltage and optimization experiments in a recirculating batch mode. Samples were pre-oxidized with NaClO using 1:2 sample to oxidant weight ratio (RS:O) to transform 100% of As(III) to As(V) in 180 seconds. A high feed water conductivity of 1500 µS/cm and a low feed water conductivity of 800µS/cm had limiting currents of 595 mA and 525 mA, respectively. Optimum experimental conditions that provided maximum As separation were applied potential (E) of 12 V, feed flow rate (Q) of 0.033 L/s, feed concentration (C) of 662.0 µg L(-1), and operating time (t) of 45 min, the most significant ones were applied potential, feed concentration and operating time. Model confirmation experiments showed a good agreement with experimental results with only 0.031% error. The total As in the diluate stream was 4.0 µg L(-1), consisting of an average of 3.0 µg L(-1) As(V) and 1.0 µg L(-1) As(III).


Assuntos
Arsênio/química , Diálise/métodos , Poluentes Químicos da Água/química , Purificação da Água/métodos , Diálise/instrumentação , Estudos de Viabilidade , Purificação da Água/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA