Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Am J Physiol Cell Physiol ; 314(4): C473-C482, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29351415

RESUMO

The production of endogenous adenosine during secretagogue stimulation of CFTR leads to feedback inhibition limiting further chloride secretion in the rectal gland of the dogfish shark (Squalus acanthias). In the present study, we examined the role of AMP-kinase (AMPK) as an energy sensor also modulating chloride secretion through CFTR. We found that glands perfused with forskolin and isobutylmethylxanthine (F + I), potent stimulators of chloride secretion in this ancient model, caused significant phosphorylation of the catalytic subunit Thr172 of AMPK. These findings indicate that AMPK is activated during energy-requiring stimulated chloride secretion. In molecular studies, we confirmed that the activating Thr172 site is indeed present in the α-catalytic subunit of AMPK in this ancient gland, which reveals striking homology to AMPKα subunits sequenced in other vertebrates. When perfused rectal glands stimulated with F + I were subjected to severe hypoxic stress or perfused with pharmacologic inhibitors of metabolism (FCCP or oligomycin), phosphorylation of AMPK Thr172 was further increased and chloride secretion was dramatically diminished. The pharmacologic activation of AMPK with AICAR-inhibited chloride secretion, as measured by short-circuit current, when applied to the apical side of shark rectal gland monolayers in primary culture. These results indicate that that activated AMPK, similar to adenosine, transmits an inhibitory signal from metabolism, that limits chloride secretion in the shark rectal gland.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Adenosina/metabolismo , Cloretos/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Metabolismo Energético , Proteínas de Peixes/metabolismo , Glândula de Sal/enzimologia , Squalus acanthias/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacologia , Animais , Hipóxia Celular , Metabolismo Energético/efeitos dos fármacos , Ativação Enzimática , Ativadores de Enzimas/farmacologia , Proteínas de Peixes/genética , Perfusão , Fosforilação , Subunidades Proteicas , Ribonucleotídeos/farmacologia , Glândula de Sal/efeitos dos fármacos , Via Secretória , Técnicas de Cultura de Tecidos
2.
ACS Appl Bio Mater ; 7(2): 1052-1063, 2024 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-38290529

RESUMO

Intracortical microelectrode arrays (MEAs) are used for recording neural signals. However, indwelling devices result in chronic neuroinflammation, which leads to decreased recording performance through degradation of the device and surrounding tissue. Coating the MEAs with bioactive molecules is being explored to mitigate neuroinflammation. Such approaches often require an intermediate functionalization step such as (3-aminopropyl)triethoxysilane (APTES), which serves as a linker. However, the standalone effect of this intermediate step has not been previously characterized. Here, we investigated the effect of coating MEAs with APTES by comparing APTES-coated to uncoated controls in vivo and ex vivo. First, we measured water contact angles between silicon uncoated and APTES-coated substrates to verify the hydrophilic characteristics of the APTES coating. Next, we implanted MEAs in the motor cortex (M1) of Sprague-Dawley rats with uncoated or APTES-coated devices. We assessed changes in the electrochemical impedance and neural recording performance over a chronic implantation period of 16 weeks. Additionally, histology and bulk gene expression were analyzed to understand further the reactive tissue changes arising from the coating. Results showed that APTES increased the hydrophilicity of the devices and decreased electrochemical impedance at 1 kHz. APTES coatings proved detrimental to the recording performance, as shown by a constant decay up to 16 weeks postimplantation. Bulk gene analysis showed differential changes in gene expression between groups that were inconclusive with regard to the long-term effect on neuronal tissue. Together, these results suggest that APTES coatings are ultimately detrimental to chronic neural recordings. Furthermore, interpretations of studies using APTES as a functionalization step should consider the potential consequences if the final functionalization step is incomplete.


Assuntos
Aminas , Doenças Neuroinflamatórias , Ratos , Animais , Ratos Sprague-Dawley , Microeletrodos , Eletrodos Implantados , Materiais Revestidos Biocompatíveis/química
3.
Acta Biomater ; 166: 278-290, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37211307

RESUMO

Intracortical microelectrodes induce vascular injury upon insertion into the cortex. As blood vessels rupture, blood proteins and blood-derived cells (including platelets) are introduced into the 'immune privileged' brain tissues at higher-than-normal levels, passing through the damaged blood-brain barrier. Blood proteins adhere to implant surfaces, increasing the likelihood of cellular recognition leading to activation of immune and inflammatory cells. Persistent neuroinflammation is a major contributing factor to declining microelectrode recording performance. We investigated the spatial and temporal relationship of blood proteins fibrinogen and von Willebrand Factor (vWF), platelets, and type IV collagen, in relation to glial scarring markers for microglia and astrocytes following implantation of non-functional multi-shank silicon microelectrode probes into rats. Together with type IV collagen, fibrinogen and vWF augment platelet recruitment, activation, and aggregation. Our main results indicate blood proteins participating in hemostasis (fibrinogen and vWF) persisted at the microelectrode interface for up to 8-weeks after implantation. Further, type IV collagen and platelets surrounded the probe interface with similar spatial and temporal trends as vWF and fibrinogen. In addition to prolonged blood-brain barrier instability, specific blood and extracellular matrix proteins may play a role in promoting the inflammatory activation of platelets and recruitment to the microelectrode interface. STATEMENT OF SIGNIFICANCE: Implanted microelectrodes have substantial potential for restoring function to people with paralysis and amputation by providing signals that feed into natural control algorithms that drive prosthetic devices. Unfortunately, these microelectrodes do not display robust performance over time. Persistent neuroinflammation is widely thought to be a primary contributor to the devices' progressive decline in performance. Our manuscript reports on the highly local and persistent accumulation of platelets and hemostatic blood proteins around the microelectrode interface of brain implants. To our knowledge neuroinflammation driven by cellular and non-cellular responses associated with hemostasis and coagulation has not been rigorously quantified elsewhere. Our findings identify potential targets for therapeutic intervention and a better understanding of the driving mechanisms to neuroinflammation in the brain.


Assuntos
Plaquetas , Hemostáticos , Ratos , Animais , Microeletrodos , Fator de von Willebrand , Doenças Neuroinflamatórias , Colágeno Tipo IV , Eletrodos Implantados/efeitos adversos , Hemostasia , Fibrinogênio
4.
Biomaterials ; 303: 122351, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37931456

RESUMO

Intracortical microelectrode arrays (MEAs) are used to record neural activity. However, their implantation initiates a neuroinflammatory cascade, involving the accumulation of reactive oxygen species, leading to interface failure. Here, we coated commercially-available MEAs with Mn(III)tetrakis(4-benzoic acid)porphyrin (MnTBAP), to mitigate oxidative stress. First, we assessed the in vitro cytotoxicity of modified sample substrates. Then, we implanted 36 rats with uncoated, MnTBAP-coated ("Coated"), or (3-Aminopropyl)triethoxysilane (APTES)-coated devices - an intermediate step in the coating process. We assessed electrode performance during the acute (1-5 weeks), sub-chronic (6-11 weeks), and chronic (12-16 weeks) phases after implantation. Three subsets of animals were euthanized at different time points to assess the acute, sub-chronic and chronic immunohistological responses. Results showed that MnTBAP coatings were not cytotoxic in vitro, and their implantation in vivo improved the proportion of electrodes during the sub-chronic and chronic phases; APTES coatings resulted in failure of the neural interface during the chronic phase. In addition, MnTBAP coatings improved the quality of the signal throughout the study and reduced the neuroinflammatory response around the implant as early as two weeks, an effect that remained consistent for months post-implantation. Together, these results suggest that MnTBAP coatings are a potentially useful modification to improve MEA reliability.


Assuntos
Silício , Ratos , Animais , Microeletrodos , Reprodutibilidade dos Testes , Eletrodos Implantados
5.
J Vis Exp ; (189)2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36440896

RESUMO

Cranial window surgery allows for the imaging of brain tissue in live mice with the use of multiphoton or other intravital imaging techniques. However, when performing any craniotomy by hand, there is often thermal damage to brain tissue, which is inherently variable surgery-to-surgery and may be dependent on individual surgeon technique. Implementing a surgical robot can standardize surgery and lead to a decrease in thermal damage associated with surgery. In this study, three methods of robotic drilling were tested to evaluate thermal damage: horizontal, point-by-point, and pulsed point-by-point. Horizontal drilling utilizes a continuous drilling schematic, while point-by-point drills several holes encompassing the cranial window. Pulsed point-by-point adds a "2 s on, 2 s off" drilling scheme to allow for cooling in between drilling. Fluorescent imaging of Evans Blue (EB) dye injected intravenously measures damage to brain tissue, while a thermocouple placed under the drilling site measures thermal damage. Thermocouple results indicate a significant decrease in temperature change in the pulsed point-by-point (6.90 °C ± 1.35 °C) group compared to the horizontal (16.66 °C ± 2.08 °C) and point-by-point (18.69 °C ± 1.75 °C) groups. Similarly, the pulsed point-by-point group also showed significantly less EB presence after cranial window drilling compared to the horizontal method, indicating less damage to blood vessels in the brain. Thus, a pulsed point-by-point drilling method appears to be the optimal scheme for reducing thermal damage. A robotic drill is a useful tool to help minimize training, variability, and reduce thermal damage. With the expanding use of multiphoton imaging across research labs, it is important to improve the rigor and reproducibility of results. The methods addressed here will help inform others of how to better use these surgical robots to further advance the field.


Assuntos
Robótica , Animais , Camundongos , Reprodutibilidade dos Testes , Craniotomia/efeitos adversos , Crânio/cirurgia , Microcirurgia
6.
J Neural Eng ; 19(5)2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36174538

RESUMO

Objective.Vagus nerve stimulation (VNS) is Food and Drug Administration-approved for epilepsy, depression, and obesity, and stroke rehabilitation; however, the morphological anatomy of the vagus nerve targeted by stimulatation is poorly understood. Here, we used microCT to quantify the fascicular structure and neuroanatomy of human cervical vagus nerves (cVNs).Approach.We collected eight mid-cVN specimens from five fixed cadavers (three left nerves, five right nerves). Analysis focused on the 'surgical window': 5 cm of length, centered around the VNS implant location. Tissue was stained with osmium tetroxide, embedded in paraffin, and imaged on a microCT scanner. We visualized and quantified the merging and splitting of fascicles, and report a morphometric analysis of fascicles: count, diameter, and area.Main results.In our sample of human cVNs, a fascicle split or merge event was observed every ∼560µm (17.8 ± 6.1 events cm-1). Mean morphological outcomes included: fascicle count (6.6 ± 2.8 fascicles; range 1-15), fascicle diameter (514 ± 142µm; range 147-1360µm), and total cross-sectional fascicular area (1.32 ± 0.41 mm2; range 0.58-2.27 mm).Significance.The high degree of fascicular splitting and merging, along with wide range in key fascicular morphological parameters across humans may help to explain the clinical heterogeneity in patient responses to VNS. These data will enable modeling and experimental efforts to determine the clinical effect size of such variation. These data will also enable efforts to design improved VNS electrodes.


Assuntos
Epilepsia , Estimulação do Nervo Vago , Humanos , Estudos Transversais , Nervo Vago/fisiologia , Estimulação do Nervo Vago/métodos , Cadáver
7.
JAMA Ophthalmol ; 138(8): 867-874, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32614410

RESUMO

Importance: The ocular surface is continuously exposed to the environment. Although studies have focused on associations between outdoor environmental conditions and dry eye, information on associations between the indoor environment and dry eye is lacking. Objective: To determine associations between the indoor environment and dry eye. Design, Setting, and Participants: This prospective cross-sectional study sample of 97 veterans with a wide range of dry eye metrics was recruited from the Miami Veterans Affairs Healthcare eye clinic from October 19, 2017, to August 30, 2018. Dry eye metrics were first evaluated in the clinic, followed by indoor home environmental metrics within 1 week using a handheld particle counter. Data were analyzed from October 19, 2017, to August 30, 2018. Main Outcomes and Measures: Symptoms of dry eye were assessed with standardized questionnaires. Dry eye signs were assessed via standard examination. Indoor environmental metrics included temperature, humidity, and particulate matter mass and count. Results: Of the 97 participants included in the analysis, 81 (84%) were men, with a mean (SD) age of 58.2 (11.9) years. Dry eye symptoms were in the moderate range with a mean (SD) Ocular Surface Disease Index (OSDI) score of 31.2 (23.6). Humidity was associated with worse symptoms and signs, including OSDI score (r = 0.30 [95% CI, 0.07-0.49]; P = .01), inflammation (r = 0.32 [95% CI, 0.10-0.51]; P = .01), Schirmer score (r = -0.25 [95% CI, -0.45 to 0.02]; P = .03), eyelid vascularity (r = 0.27 [95% CI, 0.05-0.47]; P = .02), and meibomian gland dropout (r = 0.27 [95% CI, 0.05-0.47]; P = .02). In multivariate analyses, particulate matter of 2.5 µm or less (PM2.5) was associated with dry eye metrics when adjusted for demographic characteristics, comorbidities, medications, and interaction variables. For example, a 1-unit increase in instrumented PM2.5 level was associated with a 1.59 increase in the OSDI score (95% CI, 0.58-2.59; P = .002), a 0.39 reduction in Schirmer score (95% CI, -0.75 to -0.03; P = .04), a 0.07 increase in meibomian gland dropout (95% CI, 0.01-0.13; P = .02), and a 0.06 increase in inflammation (95% CI, 0.02-0.11; P = .009). Conclusions and Relevance: When adjusting for humidity, this study found that increased particulate matter exposure was associated with worse dry eye metrics. Humidity was positively associated with dry eye metrics, potentially because higher humidity increases microbial growth and particulate matter size and mass.


Assuntos
Poluição do Ar em Ambientes Fechados/efeitos adversos , Síndromes do Olho Seco/etiologia , Umidade , Temperatura , Idoso , Benchmarking , Estudos Transversais , Síndromes do Olho Seco/diagnóstico , Monitoramento Ambiental , Feminino , Fluoresceína/administração & dosagem , Corantes Fluorescentes/administração & dosagem , Humanos , Masculino , Pessoa de Meia-Idade , Material Particulado/efeitos adversos , Estudos Prospectivos , Inquéritos e Questionários , Lágrimas/química , Estados Unidos , Veteranos
8.
Cornea ; 38(10): 1266-1272, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31356416

RESUMO

PURPOSE: Our eyes are chronically exposed to airborne particulate matter shown to adversely affect the ocular surface. This research examines size, type (organic vs. inorganic), and elemental composition of particles recovered from the ocular surface in 2 environments and their associations with dry eye (DE) metrics. METHODS: Particles were recovered from the right eye using Schirmer strips obtained both in the clinic and home environments 9 ± 8 days apart. Particle size and elemental composition were assessed using scanning electron microscopy and energy dispersive spectroscopy. The paired t test was used to evaluate the differences in the size and types of ocular surface particles recovered from the clinic and home settings. Associations of particle size and type with home environmental conditions and DE measures were evaluated using correlation analyses. RESULTS: The mean age of the 15 patients was 56 years, standard deviation (±) 12 years; 93% were men and 53% self-identified as white. Size, type, and elemental composition did not vary significantly between clinic and home. Particle surface area was marginally associated with home indoor temperature (25 °C ± 2, ρ=-0.53, P = 0.06) and significantly associated with the select DE signs: tear osmolality (304 mOsm/L ± 14, ρ= -0.60, P = 0.02), inflammation (0.7 ± 0.8, ρ = 0.53, P = 0.04), and tear breakup time (7 seconds ± 3, ρ = 0.56, P = 0.03). CONCLUSIONS: Ocular surface particles were consistently detected across 2 different environments. Greater particle area detected on Schirmer strips correlated with some DE measures, suggesting that particles detected on the ocular surface may affect eye health.


Assuntos
Túnica Conjuntiva/metabolismo , Córnea/metabolismo , Síndromes do Olho Seco/etiologia , Ambiente Controlado , Exposição Ambiental/efeitos adversos , Material Particulado/análise , Lágrimas/química , Túnica Conjuntiva/diagnóstico por imagem , Córnea/diagnóstico por imagem , Síndromes do Olho Seco/diagnóstico , Síndromes do Olho Seco/metabolismo , Feminino , Seguimentos , Humanos , Masculino , Microscopia Eletrônica de Varredura , Pessoa de Meia-Idade , Concentração Osmolar , Estudos Retrospectivos , Espectrometria por Raios X
10.
J Neural Eng ; 15(3): 034001, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29205169

RESUMO

OBJECTIVE: Our objective was to determine how readily disruption of the blood-brain barrier (BBB) occurred as a result of bone drilling during a craniotomy to implant microelectrodes in rat cortex. While the phenomenon of heat production during bone drilling is well known, practices to evade damage to the underlying brain tissue are inconsistently practiced and reported in the literature. APPROACH: We conducted a review of the intracortical microelectrode literature to summarize typical approaches to mitigate drill heating during rodent craniotomies. Post mortem skull-surface and transient brain-surface temperatures were experimentally recorded using an infrared camera and thermocouple, respectively. A number of drilling conditions were tested, including varying drill speed and continuous versus intermittent contact. In vivo BBB permeability was assayed 1 h after the craniotomy procedure using Evans blue dye. MAIN RESULTS: Of the reviewed papers that mentioned methods to mitigate thermal damage during craniotomy, saline irrigation was the most frequently cited (in six of seven papers). In post mortem tissues, we observed increases in skull-surface temperature ranging from +3 °C to +21 °C, dependent on drill speed. In vivo, pulsed-drilling (2 s-on/2 s-off) and slow-drilling speeds (1000 r.p.m.) were the most effective methods we studied to mitigate heating effects from drilling, while inconclusive results were obtained with saline irrigation. SIGNIFICANCE: Neuroinflammation, initiated by damage to the BBB and perpetuated by the foreign body response, is thought to play a key role in premature failure of intracortical recording microelectrodes. This study demonstrates the extreme sensitivity of the BBB to overheating caused by bone drilling. To avoid damage to the BBB, the authors recommend that craniotomies be drilled with slow speeds and/or with intermittent drilling with complete removal of the drill from the skull during 'off' periods. While saline alone was ineffective at preventing overheating, its use is still recommended to remove bone dust from the surgical site and to augment other cooling methods.


Assuntos
Barreira Hematoencefálica/metabolismo , Córtex Cerebral/metabolismo , Craniotomia/efeitos adversos , Eletrodos Implantados/efeitos adversos , Temperatura Alta/efeitos adversos , Animais , Barreira Hematoencefálica/patologia , Córtex Cerebral/patologia , Craniotomia/tendências , Eletrodos Implantados/tendências , Humanos , Camundongos , Microeletrodos/efeitos adversos , Microeletrodos/tendências , Ratos , Termografia/métodos , Termografia/tendências
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA