Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Small ; : e2401530, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38751307

RESUMO

The unavoidable and unpredictable surface reconstruction of metallic copper (Cu) during the electrocatalytic carbon dioxide (CO2) reduction process is a double-edged sword affecting the production of high-value-added hydrocarbon products. It is crucial to control the surface facet reconstruction and regulate the targeted facets/facet interfaces, and further understand the mechanism between activity/selectivity and the reconstructed structure of Cu for CO2 reduction. Based on the current catalyst design methods, a facile strategy combining chemical reduction and electro-reduction is proposed to achieve specified Cu(111) facets and the Cu(110)/(111) interfaces in reconstructed Cu derived from cuprous oxide (Cu2O). The surface facet reconstruction significantly boosted the electrocatalytic conversion of CO2 into multi-carbon (C2+) products comparing to the unmodified catalyst. Theoretical and experimental analyses show that the Cu(110)/(111)s interface between Cu(110) and a small amount of Cu(111) can tailor the reaction routes and lower the reaction energy barrier of C-C coupling to ethylene (C2H4). The work will guide the surface facets reconstruction strategy for Cu-based CO2 electrocatalysts, providing a promising paradigm to understand the structural variation in catalysts.

2.
Small ; : e2401394, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38709222

RESUMO

Transition metal silicates (TMSs) are attempted for the electrocatalyst of oxygen evolution reaction (OER) due to their special layered structure in recent years. However, defects such as low theoretical activity and conductivity limit their application. Researchers always prefer to composite TMSs with other functional materials to make up for their deficiency, but rarely focus on the effect of intrinsic structure adjustment on their catalytic activity, especially anion structure regulation. Herein, applying the method of interference hydrolysis and vacancy reserve, new silicate vacancies (anionic regulation) are introduced in cobalt silicate hydroxide (CoSi), named SV-CoSi, to enlarge the number and enhance the activity of catalytic sites. The overpotential of SV-CoSi declines to 301 mV at 10 mA cm-2 compared to 438 mV of CoSi. Source of such improvement is verified to be not only the increase of active sites, but also the positive effect on the intrinsic activity due to the enhancement of cobalt-oxygen covalence with the variation of anion structure by density functional theory (DFT) method. This work demonstrates that the feasible intrinsic anion structure regulation can improve OER performance of TMSs and provides an effective idea for the development of non-noble metal catalyst for OER.

3.
J Am Chem Soc ; 145(4): 2170-2182, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36657380

RESUMO

Nature's blueprint provides the fundamental principles for expanding the use of abundant metals in catalysis; however, mimicking both the structure and function of copper enzymes simultaneously in one artificial system for selective C-H bond oxidation faces marked challenges. Herein, we report a new approach to the assembly of artificial monooxygenases utilizing a binuclear Cu2S2Cl2 cluster to duplicate the identical structure and catalysis of the CuA enzyme. The designed monooxygenase Cu-Cl-bpyc facilitates well-defined redox potential that initially activated O2via photoinduced electron transfer, and generated an active chlorine radical via a ligand-to-metal charge transfer (LMCT) process from the consecutive excitation of the in situ formed copper(II) center. The chlorine radical abstracts a hydrogen atom selectively from C(sp3)-H bonds to generate the radical intermediate; meanwhile, the O2•- species interacted with the mimic to form mixed-valence species, giving the desired oxidization products with inherent product selectivity of copper monooxygenases and recovering the catalyst directly. This enzymatic protocol exhibits excellent recyclability, good functional group tolerance, and broad substrate scope, including some biological and pharmacologically relevant targets. Mechanistic studies indicate that the C-H bond cleavage was the rate-determining step and the cuprous interactions were essential to stabilize the active oxygen species. The well-defined structural characters and the fine-modified catalytic properties open a new avenue to develop robust artificial enzymes with uniform and precise active sites and high catalytic performances.


Assuntos
Cloro , Cobre , Cobre/química , Oxigênio/química , Oxigenases de Função Mista/química , Oxirredução , Metais
4.
Inorg Chem ; 61(30): 11939-11948, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35857023

RESUMO

Selectively anchoring active centers on the external surface for forming highly exposed acid sites is a highly desirable but challenging task in zeolite catalyst synthesis. Herein, a defect-guided etching-regrowth strategy is rationally designed for facilely positioning Sn Lewis acid sites on the outer surface of the Sn-B-Beta while fabricating a bifunctional hierarchical structure. The synthesis was conducted by hydrothermal treatment of the as-made B-Beta (uncalcined), which has intrinsic defects of the BEA structure, with Sn source and basic organic structure directing agent (SDA). Under a moderate SDA concentration, with blocked micropore channels, such SDA-triggered etching-regrowth will proceed along the defect defined pathway, which ensures Sn selectively anchored on the external surface. Moreover, this methodology has exclusively introduced tetrahedrally coordinated framework Sn with open Sn sites as the predominated species. Mono- and disaccharide isomerizations in ethanol over different Sn-Beta catalysts proved the prominent advantages of the hierarchical structure with highly exposed and synergetic acid sites.

5.
Phys Chem Chem Phys ; 24(23): 14284-14293, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35670094

RESUMO

Deposited transition metal clusters and nanoparticles are widely used as catalysts and have long been thought stable in reaction conditions. We investigated the electronic structure and stability of freestanding and black phosphorene supported small Pd clusters containing 1 to 6 atoms in a CO or C2H4 atmosphere by extensive first-principles based calculations. We showed that, driven by the thermodynamics, subnanometric Pd clusters and single Pd atom on phosphorene may evolve for a better balance among metal-metal, metal-support and metal-adsorbate interactions, etc., resulting in atomic dispersion of Pd in reaction conditions. The strong interfacial Pd-P interactions would deform preformed Pd clusters into atomic strips of various lengths with enhanced stability comparable to bulk Pd. The diffusion barriers of terminal Pd atoms in the zigzag direction on phosphorene are small (<0.3 eV) and vary within ∼0.1 eV with the length of these atomic strips. Further adsorption of CO or C2H4 alters the Pd-P and Pd-Pd interactions and forms thermodynamically stable surface Pd species with decreased diffusion barriers, suggesting that atomic dispersion of Pd can be achieved on phosphorene, especially in a CO or C2H4 atmosphere. The current work may help to understand the superior catalytic performance of supported subnanometric transition metal catalysts in reaction conditions and pave the way for fabrication of single atom catalysts with the desired performance.

6.
Molecules ; 27(11)2022 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-35684560

RESUMO

Similar to the metal centers in biocatalysis and homogeneous catalysis, the metal species in single atom catalysts (SACs) are charged, atomically dispersed and stabilized by support and substrate. The reaction condition dependent catalytic performance of SACs has long been realized, but seldom investigated before. We investigated CO oxidation pathways over SACs in reaction conditions using atomically dispersed Au on h-BN (AuBN) as a model with extensive first-principles-based calculations. We demonstrated that the adsorption of reactants, namely CO, O2 and CO2, and their coadsorption with reaction species on AuBN would be condition dependent, leading to various reaction species with different reactivity and impact the CO conversion. Specifically, the revised Langmuir-Hinshelwood pathway with the CO-mediated activation of O2 and dissociation of cyclic peroxide intermediate followed by the Eley-Rideal type reduction is dominant at high temperatures, while the coadsorbed CO-mediated dissociation of peroxide intermediate becomes plausible at low temperatures and high CO partial pressures. Carbonate species would also form in existence of CO2, react with coadsorbed CO and benefit the conversion. The findings highlight the origin of the condition-dependent CO oxidation performance of SACs in detailed conditions and may help to rationalize the current understanding of the superior catalytic performance of SACs.


Assuntos
Dióxido de Carbono , Monóxido de Carbono , Catálise , Oxigênio , Peróxidos
7.
Angew Chem Int Ed Engl ; 61(37): e202204918, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-35661376

RESUMO

2,4,6-Triphenylpyrylium (TPT+ ) functions as a classic organic photocatalyst and exhibits a noteworthy absorption in the visible range, strongly oxidizing excited states, and a somewhat unstable structure. Inspired by the nuclear chromophore and dual catalysis strategy, herein, we report a universal photoredox platform constructed by TPT+ -mimic bridging ligands and reductive metal ions on the basis of metal-organic supramolecular systems for various organic couplings and molecular oxygen activation under visible-light irradiation. Significant photoinduced electron transfer and ligand-to-metal charge-transfer events are both integrated and regulated by the spatial and kinetic confinement effects of the structurally confined microenvironments, effectively improving the efficiency of electron transfer and radical-radical coupling processes in photocatalysis. This package deal provides a promising way for the design of novel photocatalysts and the development of versatile and sustainable synthetic chemistry.

8.
Inorg Chem ; 60(6): 3773-3780, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33615779

RESUMO

Although many strategies have been used to help design effective near-infrared (NIR) luminescent materials, it is still a huge challenge to realize long-wavelength NIR luminescence of diimineplatinum(II) complexes in the solid state. Herein, we have successfully achieved long-wavelength NIR luminescence of a family of diimineplatinum(II) complexes based on a new strategy that combines a one-dimensional (1D) "Pt wire" structure with the electronic effect of the substituent. The structures of six solvated diimineplatinum(II) complexes based on 4,4-dichloro-2,2'-bipyridine or 4,4-dibromo-2,2'-bipyridine and 4-substituted phenylacetylene ligands have been determined, namely, 1·1/2toluene, 2·1/2THF, 3·1/8toluene, 4·1/2THF, 5·1/8CH2Cl2, and 6·1/4toluene. All of them crystallize in the monoclinic space group C2/c or C2/m and stack in the 1D "Pt wire" structure. In the solid state, six complexes exhibited unusual long-wavelength metal-metal-to-ligand charge-transfer luminescence that peaked at 984, 1044, 972, 990, 1022, and 935 nm, respectively. Interestingly, 2·1/2THF has the shortest Pt···Pt distance and the longest emission wavelength among the six complexes. As far as we know, the luminescence of 2·1/2THF at 1044 nm is the longest emission wavelength among known diimineplatinum(II) complexes. Systematic studies revealed that good molecular planarity, suitable substituent position, weak hydrogen-bond-forming ability of the substituents, appropriate molecular bending, and weakening of the interaction between solvated molecules and platinum molecules are conducive to the construction of a 1D "Pt wire" structure of the diimineplatinum(II) complex. Furthermore, the emission energy of the complex is mainly determined by the strength of the Pt-Pt interaction and electronic effect of the substituent.

9.
Phys Chem Chem Phys ; 23(17): 10509-10517, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33899867

RESUMO

Fe is not only the most abundant metal on the planet but is also the key component of many enzymes in organisms that are capable of catalyzing many chemical conversions. Mono-dispersed Fe atoms on carbonaceous materials are single atom catalysts (SACs) that function like enzymes. To take advantage of the outstanding catalytic performance of Fe-based SACs, we extended a CO oxidation reaction network over mono-dispersed Fe atoms on graphene (FeGR) by first-principles based calculations. FeGR-catalyzed CO oxidation is initiated with a revised Langmuir-Hinshelwood pathway through a CO-assisted scission of the O-O bond in peroxide species (OCOO). We showed that carbonate species (CO3), which were previously generally considered as a persistent species blocking reaction sites, may form from CO2 and negatively charged O species. This pathway competes with desorption of CO2 and reduction of the Fe center with gaseous CO, and it is exothermic and inevitable, especially at low temperatures and with high CO2 content. Although direct dissociation of CO3 is demanding on FeGR, further adsorption of CO on Fe in CO3 is plausible and takes place spontaneously. We then showed that adsorbed CO may react with CO3, forming a cyclic-carbonate-like species that dissociates easily to CO2. These findings highlight the reaction condition-dependent formation and evolution of CO3 as well as its contribution to CO conversion, and it may extend the understanding of the performance of SACs in low temperature CO oxidation.

10.
Molecules ; 26(8)2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33924390

RESUMO

Light olefins are key components of modern chemical industry and are feedstocks for the production of many commodity chemicals widely used in our daily life. It would be of great economic significance to convert light alkanes, produced during the refining of crude oil or extracted during the processing of natural gas selectively to value-added products, such as light alkenes, aromatic hydrocarbons, etc., through catalytic dehydrogenation. Among various catalysts developed, Ga-modified ZSM-5-based catalysts exhibit superior catalytic performance and stability in dehydrogenation of light alkanes. In this mini review, we summarize the progress on synthesis and application of Ga-modified ZSM-5 as catalysts in dehydrogenation of light alkanes to olefins, and the dehydroaromatization to aromatics in the past two decades, as well as the discussions on in-situ formation and evolution of reactive Ga species as catalytic centers and the reaction mechanisms.

11.
Molecules ; 26(20)2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34684820

RESUMO

The development of electrode materials for supercapacitors (SCs) is greatly desired, and this still poses an immense challenge for researchers. Cobalt silicate (Co2SiO4, denoted as CoSi) with a high theoretical capacity is deemed to be one of the sustainable electrode materials for SCs. However, its achieved electrochemical properties are still not satisfying. Herein, the phosphorus (P)-doped cobalt silicate, denoted as PCoSi, is synthesized by a calcining strategy. The PCoSi exhibits 1D nanobelts with a specific surface area of 46 m2∙g-1, and it can significantly improve the electrochemical properties of CoSi. As a supercapacitor's (SC's) electrode, the specific capacitance of PCoSi attains 434 F∙g-1 at 0.5 A∙g-1, which is much higher than the value of CoSi (244 F∙g-1 at 0.5 A∙g-1). The synergy between the composition and structure endows PCoSi with attractive electrochemical properties. This work provides a novel strategy to improve the electrochemical performances of transition metal silicates.

12.
Phys Chem Chem Phys ; 22(44): 25841-25847, 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33150897

RESUMO

Graphdiyne (GDY) is a newly discovered 2D carbon allotrope, widely used as a support for heterogeneous transition metal catalysts. We investigated the binding, electronic structure, diffusion mechanisms and aggregation possibilities of mono-dispersed Ir atoms on GDY by extensive first-principles based calculations. The binding of Ir atoms on GDY can be up to -4.84 eV when the Ir atom is trapped in the C18 ring interacting with 2 adjacent diyne moieties connected to the same benzene ring. The diffusion of Ir atoms along the diyne moiety is quite facile with barriers less than 0.89 eV; the highest barrier for Ir diffusion into the C18 ring is 0.10 eV, whereas inter/intra-C18 ring diffusion is limited by a barrier of 1.64 eV, thereby leading to a dominant population of Ir atoms trapped in the C18 rings. The electronic structure of small Ir clusters was also investigated. Though the formation of Ir-Ir bonds is exothermic and thermodynamically favorable, which may, in some circumstances, even overwhelm the formation of interfacial Ir-C bonds, aggregation of Ir atoms into clusters is limited by the high energy barrier of inter/intra C18 ring diffusion. We propose that aggregation of Ir atoms into clusters may be initiated by shifting the diffusion thermodynamics deliberately and expect the finding may help to understand the stability and evolution of GDY based single atom catalysts.

13.
Int J Mol Sci ; 20(12)2019 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-31234409

RESUMO

Crystallite aluminosilicates are inorganic microporous materials with well-defined pore-size and pore-structures, and have important industrial applications, including gas adsorption and separation, catalysis, etc. Crystallite aluminosilicates are commonly synthesized via hydrothermal processes, where the oligomerization of silicic acids is crucial. The mechanisms for the oligomerization of poly-silicic acids in neutral aqueous solution were systematically investigated by extensive first-principles-based calculations. We showed that oligomerization of poly-silicic acid molecules proceeds through the lateral attacking and simultaneously proton transfer from the approaching molecule for the formation of a 5-coordinated Si species as the transition state, resulting in the ejection of a water molecule from the formed poly-silicic acid. The barriers for this mechanism are in general more plausible than the conventional direct attacking of poly-silicic acid with reaction barriers in the range of 150-160 kJ/mol. The formation of linear or branched poly-silicic acids by intermolecular oligomerization is only slightly more plausible than the formation of cyclic poly-silicic acids via intramolecular oligomerization according to the reaction barriers (124.2-133.0 vs. 130.6-144.9 kJ/mol). The potential contributions of oligomer structures, such as the length of the linear oligomers, ring distortions and neighboring linear branches, etc., to the oligomerization were also investigated but found negligible. According to the small differences among the reaction barriers, we proposed that kinetic selectivity of the poly-silicic acids condensation would be weak in neutral aqueous solution and the formation of zeolite-like structures would be thermodynamics driven.


Assuntos
Ácido Silícico/química , Água/química , Zeolitas/química , Silicatos de Alumínio/química , Dimerização , Cinética , Modelos Moleculares , Soluções , Termodinâmica
14.
Molecules ; 20(10): 19540-53, 2015 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-26516830

RESUMO

Taking the adsorption of CO, NO, O2 and O as probes, we investigated the electronic structure of transition metal atoms (TM, TM = Fe, Co, Ni, Cu and Zn) embedded in graphene by first-principles-based calculations. We showed that these TM atoms can be effectively stabilized on monovacancy defects on graphene by forming plausible interactions with the C atoms associated with dangling bonds. These interactions not only give rise to high energy barriers for the diffusion and aggregation of the embedded TM atoms to withstand the interference of reaction environments, but also shift the energy levels of TM-d states and regulate the reactivity of the embedded TM atoms. The adsorption of CO, NO, O2 and O correlates well with the weight averaged energy level of TM-d states, showing the crucial role of interfacial TM-C interactions on manipulating the reactivity of embedded TM atoms. These findings pave the way for the developments of effective monodispersed atomic TM composites with high stability and desired performance for gas sensing and catalytic applications.


Assuntos
Grafite/química , Elementos de Transição/química , Adsorção , Monóxido de Carbono/química , Eletrônica , Modelos Moleculares , Óxido Nítrico/química , Oxigênio/química , Teoria Quântica
15.
Chemosphere ; 362: 142612, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38880261

RESUMO

Water pollution and energy crisis are becoming global and strategic issues that people are closely concerned about. Green and energy-saving photocatalytic technology is developing rapidly in solving global energy crises and environmental pollution problems. Therefore, we propose the "kill two birds with one stone" strategy to design efficient photocatalysts for dye wastewater treatment by utilizing heavy metal ions in wastewater. The adsorption properties of Mordenite (MOR) were utilized to removal heavy metal ions (Cd2+ and Zn2+) from waste water, and the adsorbed heavy metal ions were dried and sulfurized to obtain CdS/ZnS/MOR(ZnCdM). Then, g-C3N4 was ultrasonically dispersed and composited with ZnCdM by self-assembly, 25 wt% ZnCdCM photocatalytic material was obtained with a degradation rate of 99.8% in 1.5 h for Rhodamine B(RhB). It was found that MOR can provid adequate support for active substances, and the surface of MOR with smaller sizes of CdS nanoparticles, ZnS nanoparticles and g-C3N4 nanosheets, which increased the specific surface area of the materials and improved the reactivity. The porous structure of MOR is favorable for the enrichment of RhB, and the electric field effect of MOR leads to the decrease of the photogenerated carrier complex rate in the semiconductor, which increases the catalytic efficiency. In addition, the double Z charge transfer mechanism formed by CdS, ZnS, g-C3N4 is favorable for separating photogenerated carriers. These synergistic effects improved the photocatalytic efficiency. This strategy will be a green and promising solution to water pollution and energy crisis.

16.
J Colloid Interface Sci ; 673: 70-79, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38875799

RESUMO

Among battery technologies, aqueous zinc ion batteries (AZIBs) have hit between the eyes in the next generation of extensive energy storage devices due to their outstanding superiority. The main problem that currently restricts the development of AZIBs is how to obtain stable Zn anodes. In this study, taking the improvement of a series of problems caused by the physically attached artificial interfacial layer on Zn anode as a starting point, a nanosheet morphology of ZnSiO3 (denoted as ZnSi) is constructed by self-growth on Zn foil (Zn@ZnSi) by a simple hydrothermal reaction. The ZnSi nano-interfacial layer effectively slices the surface of the Zn foil into individual microscopic interfacial layers, constructing abundant pores. The nanosheets of Zn@ZnSi construct rich nanoscale Zn2+ transport channels, which provide higher electron and ion transport paths, thus achieving the effect of effectively homogenizing the electric field distribution and decreasing the local current density. Thanks to its inherent and structural properties, the Zn@ZnSi anode has a high specific capacity and good cycling stability compared with the Zn electrode. The lifetime of the Zn@ZnSi//Zn@ZnSi symmetric cell is much higher than that of the Zn//Zn symmetric cell at 1 mA cm-2. The capacity of the Zn@ZnSi//NH4V4O10 full cell can still reach 98 mAh g-1 after 1000 cycles at 1 A/g. The low-cost and scalable synthesis of ZnSi nano-interfacial layer on Zn is expected to provide new perspectives on interfacial engineering for Zn anodic protection.

17.
J Colloid Interface Sci ; 676: 947-958, 2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39068839

RESUMO

Supercapacitors (SCs) using ammonium-ion (NH4+) as the charge carrier (NH4+-SCs) have attracted continuous attention and vanadium-based materials are proved to have high-efficient NH4+-storage properties. Monoclinic vanadium dioxide, VO2(B), as an anode material applied to SCs has been rarely reported and modulating its electronic structure for boosted NH4+-storage is full of challenge. In this work, molybdenum-doped VO2(B) (Mo-doped VO2(B)) is designed and synthesize to enhance its NH4+-storage. The introduction of Mo atom into the crystal structure of VO2(B) can modulate its crystal structure and bring in some defects. Experimental results manifest that Mo-doped VO2(B) with 2 % Mo-doping shows the best electrochemical properties. Mo-doped VO2(B) achieves the specific capacitance of 1403 F g-1 (390 mAh g-1) at 0.1 A g-1 and the capacitance retention of about 98 % after 5000 cycle, superior to that of VO2(B) (893 F g-1, 248 mAh g-1 at 0.1 A g-1 and 60 % capacitance retention. The hybrid supercapacitor (HSC) assembled by Mo-doped VO2(B) and active carbon delivers good electrochemical performance with the energy density of 38.6 Wh kg-1 at power density of 208.3 W kg-1. This work proves that the Mo-doping is an efficient strategy for boosted NH4+-storage of VO2(B) and this strategy is like a Chinese idiom "like adding wings to a tiger" to guide the design of electrode materials for high-efficient NH4+-storage.

18.
J Colloid Interface Sci ; 669: 2-13, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38703578

RESUMO

Aqueous nonmetallic ion batteries have garnered significant interest due to their cost-effectiveness, environmental sustainability, and inherent safety features. Specifically, ammonium ion (NH4+) as a charge carrier has garnered more and more attention recently. However, one of the persistent challenges is enhancing the electrochemical properties of vanadium dioxide (VO2) with a tunnel structure, which serves as a highly efficient NH4+ (de)intercalation host material. Herein, a novel architecture, wherein carbon-coated VO2 nanobelts (VO2@C) with a core-shell structure are engineered to augment NH4+ storage capabilities of VO2. In detail, VO2@C is synthesized via the glucose reduction of vanadium pentoxide under hydrothermal conditions. Experimental results manifest that the introduction of the carbon layer on VO2 nanobelts can enhance mass transfer, ion transport and electrochemical kinetics, thereby culminating in the improved NH4+ storage efficiency. VO2@C core-shell composite exhibits a remarkable specific capacity of ∼300 mAh/g at 0.1 A/g, which is superior to that of VO2 (∼238 mAh/g) and various other electrode materials used for NH4+ storage. The NH4+ storage mechanism can be elucidated by the reversible NH4+ (de)intercalation within the tunnel of VO2, facilitated by the dynamic formation and dissociation of hydrogen bonds. Furthermore, when integrated into a full battery with polyaniline (PANI) cathode, the VO2@C//PANI full battery demonstrates robust electrochemical performances, including a specific capacity of ∼185 mAh·g-1 at 0.2 A·g-1, remarkable durability of 93 % retention after 1500 cycles, as well as high energy density of 58 Wh·kg-1 at 5354 W·kg-1. This work provides a pioneering approach to design and explore composite materials for efficient NH4+ storage, offering significant implications for future battery technology enhancements.

19.
J Colloid Interface Sci ; 671: 78-87, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38795536

RESUMO

Aqueous ammonium ion batteries (AAIBs) are garnering increasing attention due to their utilization of abundant resources, cost-effectiveness, safety, and unique energy storage mechanism. The pursuit of high-performance cathode materials has become a pressing issue. In this study, we propose and synthesize ferrocene-embedded hydrated vanadium pentoxide (Fer/VOH) for implementation in AAIBs. The inclusion of ferrocene serves to expand the interlayer spacing, mitigate interlayer forces, and introduce the electron-rich environment characteristic of ferrocene. This augmentation facilitates the creation of additional oxygen vacancies, substantially enhancing the capacity and efficiency of ammonium ion storage. Notably, our investigation reveals that the incorporation of ferrocene attenuates the hydrogen bonding interactions associated with ammonium ions, rendering them more amenable to the interlayer embedding and release processes. Building upon these advantages, Fer/VOH exhibits a specific capacity of 313 mAh/g at a current density of 0.2 A/g, representing the highest reported performance among vanadium oxides utilized in AAIBs to date. Even after 2000 charge/discharge cycles at a current density of 2 A/g, Fer/VOH maintains a reversible specific capacity of 89 mAh/g, with a capacity retention rate of 54.8%. This study confirms the viability of Fer/VOH as a cathode material for AAIBs and offers a novel approach to enhancing the electrical conductivity and diminishing the hydrogen bonding forces in vanadium oxide intercalation through the embedding of electron-rich species and positronic groups.

20.
Adv Mater ; 36(8): e2306910, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37884276

RESUMO

Electron modulation presents a captivating approach to fabricate efficient electrocatalysts for the oxygen evolution reaction (OER), yet it remains a challenging undertaking. In this study, an effective strategy is proposed to regulate the electronic structure of metal-organic frameworks (MOFs) by the construction of MOF-on-MOF heterogeneous architectures. As a representative heterogeneous architectures, MOF-74 on MOF-274 hybrids are in situ prepared on 3D metal substrates (NiFe alloy foam (NFF)) via a two-step self-assembly method, resulting in MOF-(74 + 274)@NFF. Through a combination of spectroscopic and theory calculation, the successful modulation of the electronic property of MOF-(74 + 274)@NFF is unveiled. This modulation arises from the phase conjugation of the two MOFs and the synergistic effect of the multimetallic centers (Ni and Fe). Consequently, MOF-(74 + 274)@NFF exhibits excellent OER activity, displaying ultralow overpotentials of 198 and 223 mV at a current density of 10 mA cm-2 in the 1.0 and 0.1 M KOH solutions, respectively. This work paves the way for manipulating the electronic structure of electrocatalysts to enhance their catalytic activity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA