Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Development ; 150(21)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37938830

RESUMO

The histone variant H2A.Z is central to early embryonic development, determining transcriptional competency through chromatin regulation of gene promoters and enhancers. In addition to genic loci, we find that H2A.Z resides at a subset of evolutionarily young repetitive elements, including DNA transposons, long interspersed nuclear elements and long terminal repeats, during early zebrafish development. Moreover, increases in H2A.Z occur when repetitive elements become transcriptionally active. Acquisition of H2A.Z corresponds with a reduction in the levels of the repressive histone modification H3K9me3 and a moderate increase in chromatin accessibility. Notably, however, de-repression of repetitive elements also leads to a significant reduction in H2A.Z over non-repetitive genic loci. Genic loss of H2A.Z is accompanied by transcriptional silencing at adjacent coding sequences, but remarkably, these impacts are mitigated by augmentation of total H2A.Z protein via transgenic overexpression. Our study reveals that levels of H2A.Z protein determine embryonic sensitivity to de-repression of repetitive elements, that repetitive elements can function as a nuclear sink for epigenetic factors and that competition for H2A.Z greatly influences overall transcriptional output during development. These findings uncover general mechanisms in which counteractive biological processes underlie phenotypic outcomes.


Assuntos
Histonas , Peixe-Zebra , Animais , Histonas/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Cromatina/genética , Processamento de Proteína Pós-Traducional , Desenvolvimento Embrionário/genética , Nucleossomos
2.
Dev Biol ; 507: 34-43, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38159623

RESUMO

Epigenetic regulation of chromatin states is crucial for proper gene expression programs and progression during development, but precise mechanisms by which epigenetic factors influence differentiation remain poorly understood. Here we find that the histone variant H2A.Z accumulates at Sox motif-containing promoters during zebrafish gastrulation while neighboring genes become transcriptionally active. These changes coincide with reduced expression of anp32e, the H2A.Z histone removal chaperone, suggesting that loss of Anp32e may lead to increases in H2A.Z binding during differentiation. Remarkably, genetic removal of Anp32e in embryos leads to H2A.Z accumulation prior to gastrulation and developmental genes become precociously active. Accordingly, H2A.Z accumulation occurs most extensively at Sox motif-associated genes, including many which are normally activated following gastrulation. Altogether, our results provide compelling evidence for a mechanism in which Anp32e preferentially restricts H2A.Z accumulation at Sox motifs to regulate the initial phases of developmental differentiation in zebrafish.


Assuntos
Histonas , Peixe-Zebra , Animais , Histonas/genética , Histonas/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Gastrulação/genética , Epigênese Genética , Cromatina , Nucleossomos
3.
Dev Dyn ; 251(4): 729-742, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34647658

RESUMO

BACKGROUND: Cell fate decisions are governed by interactions between sequence-specific transcription factors and a dynamic chromatin landscape. Zebrafish offer a powerful system for probing the mechanisms that drive these cell fate choices, especially in the context of early embryogenesis. However, technical challenges associated with conventional methods for chromatin profiling have slowed progress toward understanding the exact relationships between chromatin changes, transcription factor binding, and cellular differentiation during zebrafish embryogenesis. RESULTS: To overcome these challenges, we adapted the chromatin profiling methods Cleavage Under Targets and Release Using Nuclease (CUT&RUN) and CUT&Tag for use in zebrafish and applied these methods to generate high-resolution enrichment maps for H3K4me3, H3K27me3, H3K9me3, RNA polymerase II, and the histone variant H2A.Z using tissue isolated from whole, mid-gastrula stage embryos. Using this data, we identify a subset of genes that may be bivalently regulated during both zebrafish and mouse gastrulation, provide evidence for an evolving H2A.Z landscape during embryo development, and demonstrate the effectiveness of CUT&RUN for detecting H3K9me3 enrichment at repetitive sequences. CONCLUSIONS: Our results demonstrate the power of combining CUT&RUN and CUT&Tag methods with the strengths of the zebrafish system to define emerging chromatin landscapes in the context of vertebrate embryogenesis.


Assuntos
Cromatina , Peixe-Zebra , Animais , Cromatina/genética , Imunoprecipitação da Cromatina , Desenvolvimento Embrionário/genética , Gastrulação/genética , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Peixe-Zebra/genética
4.
PLoS Genet ; 15(12): e1008553, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31841513

RESUMO

Many tissues rely on resident stem cell population to maintain homeostasis. The balance between cell proliferation and differentiation is critical to permit tissue regeneration and prevent dysplasia, particularly following tissue damage. Thus, understanding the cellular processes and genetic programs that coordinate these processes is essential. Here, we report that the conserved transcription factor zfh2 is specifically expressed in Drosophila adult intestinal stem cell and progenitors and is a critical regulator of cell differentiation in this lineage. We show that zfh2 expression is required and sufficient to drive the activation of enteroblasts, the non-proliferative progenitors of absorptive cells. This transition is characterized by the transient formation of thin membrane protrusions, morphological changes characteristic of migratory cells and compensatory stem cell proliferation. We found that zfh2 acts in parallel to insulin signaling and upstream of the TOR growth-promoting pathway during early differentiation. Finally, maintaining zfh2 expression in late enteroblasts blocks terminal differentiation and leads to the formation of highly dysplastic lesions, defining a new late cell differentiation transition. Together, our study greatly improves our understanding of the cascade of cellular changes and regulatory steps that control differentiation in the adult fly midgut and identifies zfh2 as a major player in these processes.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Mucosa Intestinal/citologia , Células-Tronco/citologia , Animais , Diferenciação Celular , Proliferação de Células , Drosophila melanogaster/metabolismo , Feminino , Regulação da Expressão Gênica , Insulina/metabolismo , Absorção Intestinal , Mucosa Intestinal/metabolismo , Transdução de Sinais , Células-Tronco/metabolismo
5.
Res Sq ; 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38410478

RESUMO

Aging is associated with a decline in stem cell functionality and number across the organism. In this study, we aimed to further unravel Muscle Stem Cells (MuSCs) aging by assessing how systemic factors influence MuSC fate decisions through long-term epigenetic landscape remodelling. As aging is intricately linked to a pro-inflammatory shift, we studied the epigenetic effects of inflammatory signals in MuSCs and measured decreased H4K20me1 levels. This loss disrupts MuSC quiescence, largely through epigenetic silencing of Notch target genes. In the setting of inflammatory signals or aging, the lack of Kmt5a and the subsequent absence of de novoH4K20me1 culminate in cell death by ferroptosis. Aged MuSCs manifest abnormal iron metabolism and reduced Gpx4 levels, resulting in the accumulation of intracellular iron, increased reactive oxygen species, genomic instability, and lipid peroxidation. We showed that ferroptosis is the predominant mode of cell death in aged MuSCs, with remarkably high levels of lipid peroxidation; a phenomenon we also observed in aged hematopoietic stem cells. Implementing preventative strategies to inhibit systemic inflammation prevented aged MuSC ferroptosis, preserving their numbers and regenerative capabilities. This intervention significantly enhanced aged muscle regeneration and strength recovery and extended both lifespan and healthspan in mice. This study delineates a previously underappreciated fate trajectory for stem cell aging, and offers meaningful insights into the treatment of age-related disorders.

6.
bioRxiv ; 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38187710

RESUMO

Epigenetic regulation of chromatin states is crucial for proper gene expression programs and progression during development, but precise mechanisms by which epigenetic factors influence differentiation remain poorly understood. Here we find that the histone variant H2A.Z accumulates at Sox motif-containing promoters during zebrafish gastrulation while neighboring genes become transcriptionally active. These changes coincide with reduced expression of anp32e, the H2A.Z histone removal chaperone, suggesting that loss of Anp32e may lead to increases in H2A.Z during differentiation. Remarkably, genetic removal of Anp32e in embryos leads to H2A.Z accumulation prior to gastrulation, and precocious developmental transcription of Sox motif associated genes. Altogether, our results provide compelling evidence for a mechanism in which Anp32e restricts H2A.Z accumulation at Sox motif-containing promoters, and subsequent down-regulation of Anp32e enables temporal up-regulation of Sox motif associated genes.

7.
Front Genet ; 14: 1264382, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37829282

RESUMO

Background: Physiological and pathological stimuli result in distinct forms of cardiac hypertrophy, but the molecular regulation comparing the two, especially at the DNA methylation level, is not well understood. Methods: We conducted an in vitro study using human cardiomyocytes exposed to angiotensin II (AngII) and insulin-like growth factor 1 (IGF-1) to mimic pathologically and physiologically hypertrophic heart models, respectively. Whole genome DNA methylation patterns were profiled by the Infinium human MethylationEPIC platform with >850 K DNA methylation loci. Two external datasets were used for comparisons and qRT-PCR was performed for examining expression of associated genes of those identified DNA methylation loci. Results: We detected 194 loci that are significantly differentially methylated after AngII treatment, and 206 significant loci after IGF-1 treatment. Mapping the significant loci to genes, we identified 158 genes corresponding to AngII treatment and 175 genes to IGF-1 treatment. Using the gene-set enrichment analysis, the PI3K-Akt signaling pathway was identified to be significantly enriched for both AngII and IGF-1 treatment. The Hippo signaling pathway was enriched after IGF-1 treatment, but not for AngII treatment. CDK6 and RPTOR are components of the PI3K-Akt pathway but have different DNA methylation patterns in response to AngII and IGF-1. qRT-PCR confirmed the different gene expressions of CDK6 and PRTOR. Conclusion: Our study is pioneering in profiling epigenome DNA methylation changes in adult human cardiomyocytes under distinct stress conditions: pathological (AngII) and physiological (IGF-1). The identified DNA methylation loci, genes, and pathways might have the potential to distinguish between pathological and physiological cardiac hypertrophy.

8.
Stem Cell Reports ; 14(2): 226-240, 2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-32032550

RESUMO

Robust production of terminally differentiated cells from self-renewing resident stem cells is essential to maintain proper tissue architecture and physiological functions, especially in high-turnover tissues. However, the transcriptional networks that precisely regulate cell transition and differentiation are poorly understood in most tissues. Here, we identified Sox100B, a Drosophila Sox E family transcription factor, as a critical regulator of adult intestinal stem cell differentiation. Sox100B is expressed in stem and progenitor cells and required for differentiation of enteroblast progenitors into absorptive enterocytes. Mechanistically, Sox100B regulates the expression of another critical stem cell differentiation factor, Sox21a. Supporting a direct control of Sox21a by Sox100B, we identified a Sox21a intronic enhancer that is active in all intestinal progenitors and directly regulated by Sox100B. Taken together, our results demonstrate that the activity and regulation of two Sox transcription factors are essential to coordinate stem cell differentiation and proliferation and maintain intestinal tissue homeostasis.


Assuntos
Envelhecimento/genética , Diferenciação Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Regulação da Expressão Gênica no Desenvolvimento , Intestinos/citologia , Fatores de Transcrição SOX9/metabolismo , Células-Tronco/citologia , Animais , Sequência de Bases , Proliferação de Células , Corpos Embrioides/citologia , Elementos Facilitadores Genéticos/genética , Genes Reporter , Íntrons/genética , Fatores de Transcrição SOXB2/metabolismo , Células-Tronco/metabolismo
9.
Nat Commun ; 11(1): 5063, 2020 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-33033242

RESUMO

Genome-wide chromatin state underlies gene expression potential and cellular function. Epigenetic features and nucleosome positioning contribute to the accessibility of DNA, but widespread regulators of chromatin state are largely unknown. Our study investigates how coordination of ANP32E and H2A.Z contributes to genome-wide chromatin state in mouse fibroblasts. We define H2A.Z as a universal chromatin accessibility factor, and demonstrate that ANP32E antagonizes H2A.Z accumulation to restrict chromatin accessibility genome-wide. In the absence of ANP32E, H2A.Z accumulates at promoters in a hierarchical manner. H2A.Z initially localizes downstream of the transcription start site, and if H2A.Z is already present downstream, additional H2A.Z accumulates upstream. This hierarchical H2A.Z accumulation coincides with improved nucleosome positioning, heightened transcription factor binding, and increased expression of neighboring genes. Thus, ANP32E dramatically influences genome-wide chromatin accessibility through subtle refinement of H2A.Z patterns, providing a means to reprogram chromatin state and to hone gene expression levels.


Assuntos
Cromatina/metabolismo , Genoma , Chaperonas Moleculares/metabolismo , Animais , Diferenciação Celular/genética , DNA Helicases/metabolismo , Embrião de Mamíferos/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Histonas/metabolismo , Camundongos , Proteínas Nucleares/metabolismo , Nucleossomos/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Fatores de Transcrição/metabolismo
11.
Cell Rep ; 13(5): 906-14, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-26565904

RESUMO

Adult organs and their resident stem cells are constantly facing the challenge of adapting cell proliferation to tissue demand, particularly in response to environmental stresses. Whereas most stress-signaling pathways are conserved between progenitors and differentiated cells, stem cells have the specific ability to respond by increasing their proliferative rate, using largely unknown mechanisms. Here, we show that a member of the Sox family of transcription factors in Drosophila, Sox21a, is expressed in intestinal stem cells (ISCs) in the adult gut. Sox21a is essential for the proliferation of these cells during both normal epithelium turnover and repair. Its expression is induced in response to tissue damage, downstream of the Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK) pathways, to promote ISC proliferation. Although short-lived, Sox21a mutant flies show no developmental defects, supporting the notion that this factor is a specific regulator of adult stem cell proliferation.


Assuntos
Células-Tronco Adultas/metabolismo , Proliferação de Células , Proteínas de Drosophila/metabolismo , Intestinos/citologia , Fatores de Transcrição SOXB2/metabolismo , Células-Tronco Adultas/fisiologia , Animais , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Mucosa Intestinal/metabolismo , Sistema de Sinalização das MAP Quinases , Fatores de Transcrição SOXB2/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA