Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biophys J ; 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39340153

RESUMO

Hemolysis, including subclinical hemolysis, is a potentially severe complications of mechanical heart valves (MHVs), which leads to shortened red blood cell (RBC) lifespan and hemolytic anemia. Serious hemolysis is usually associated with structural deterioration and regurgitation. However, the shear stress in MHVs' narrow leakage slits is much lower than the shear stress threshold causing hemolysis and the mechanisms in this context remain largely unclear. This study investigated the hemolysis mechanism of RBCs in cell-size slits under high shear rates by establishing in vitro microfluidic devices and a coarse-grained molecular dynamics (CGMD) model, considering both fluid and structural effects simultaneously. Microfluidic experiments and computational simulation revealed six distinct dynamic states of RBC traversal through MHVs' microscale slits under various shear rates and slit sizes. It elucidated that RBC dynamic states were influenced by not only by fluid forces but significantly by the compressive force of slit walls. The variation of the potential energy of the cell membrane indicated its stretching, deformation, and rupture during traversal, corresponding to the six dynamic states. The maximum forces exerted on membrane by water particles and slit walls directly determined membrane rupture, serving as a critical determinant. This analysis helps in understanding the contribution of the slit walls to membrane rupture and identifying the threshold force that leads to membrane rupture. The hemolysis mechanism of traversing microscale slits is revealed to effectively explain the occurrences of hemolysis and subclinical hemolysis.

2.
J Insect Sci ; 20(5)2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-33098431

RESUMO

The abdominal intersegmental structures allow insects, such as honey bees, dragonflies, butterflies, and drosophilae, to complete diverse behavioral movements. In order to reveal how the complex abdominal movements of these insects are produced, we use the honey bee (Apis mellifera L.) as a typical insect to study the relationship between intersegmental structures and abdominal motions. Microstructure observational experiments are performed by using the stereoscope and the scanning electron microscope. We find that a parallel mechanism, composed of abdominal cuticle and muscles between the adjacent segments, produces the complex and diverse movements of the honey bee abdomen. These properties regulate multiple behavioral activities such as waggle dance and flight attitude adjustment. The experimental results demonstrate that it is the joint efforts of the muscles and membranes that connected the adjacent cuticles together. The honey bee abdomen can be waggled, expanded, contracted, and flexed with the actions of the muscles. From the view point of mechanics, a parallel mechanism is evolved from the intersegmental connection structures of the honey bee abdomen. Here, we conduct a kinematic analysis of the parallel mechanism to simulate the intersegmental abdominal motions.


Assuntos
Abelhas/fisiologia , Abdome , Animais , Fenômenos Biomecânicos , Movimento
3.
ACS Appl Mater Interfaces ; 15(48): 55447-55455, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37975805

RESUMO

Liquid infused surfaces (LIS) hold remarkable potential in anticoagulation. However, liquid loss of LIS in the bloodstream remains a challenge toward its clinical application. Here, micronano hierarchy structures are obtained on the titanium alloy substrate by regulating the microspheres' distribution. When the gap between the microspheres is smaller than the diameter of the red blood cell (RBC), the LIS is more stable under the blood wash and presents a better anticoagulation performance. The proper interval is found to prevent the RBCs from entering the gap and remove the liquid on the surface. The retained thickness of the liquid film is measured by the atomic force microscopy (AFM) technique. The LIS is applied on the front guide vane of an artificial heart pump and exhibits significant improvement on anticoagulation in the blood circulation in vitro for 25 h. The techniques and findings can be used to optimize the anticoagulation performance of LIS-related biomedical implant devices.


Assuntos
Ligas , Titânio , Microscopia de Força Atômica , Titânio/química , Eritrócitos , Anticoagulantes/farmacologia
4.
Adv Sci (Weinh) ; 9(21): e2201291, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35615977

RESUMO

The left ventricular assist device (LVAD) is often used in the treatment of heart failure. However, 4% to 9% implanted LVAD will have thrombosis problem in one year, which is fatal to the patient's life. In this work, an interventional sonothrombolysis (IST) method is developed to realize the thrombolysis on LVAD. A pair of ultrasound transducer rings is installed on the shell of LVAD, and drug-loaded microbubbles are injected into the LVAD through the interventional method. The microbubbles are adhere on the thrombus with the coated thrombus-targeted drugs, and the thrombolytic drugs carried by the bubbles are brought into the thrombus by the cavitation of bubbles under the ultrasound. In a proof-of-concept experiment in a live sheep model, the thrombus on LVAD is dissolved in 30 min, without damages on LVADs and organs. This IST exhibits to be more efficient and safer compared with other thrombolysis methods on LVAD.


Assuntos
Insuficiência Cardíaca , Coração Auxiliar , Trombose , Animais , Fibrinolíticos/uso terapêutico , Insuficiência Cardíaca/tratamento farmacológico , Microbolhas , Ovinos , Trombose/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA