Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Rep Prog Phys ; 86(4)2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36735956

RESUMO

The discovery of the quantum Hall effect (QHE) in 1980 marked a turning point in condensed matter physics: given appropriate experimental conditions, the Hall conductivityσxyof a two-dimensional electron system is exactly quantized. But what happens to the QHE in three dimensions (3D)? Experiments over the past 40 years showed that some of the remarkable physics of the QHE, in particular plateau-like Hall conductivitiesσxyaccompanied by minima in the longitudinal resistivityρxx, can also be found in 3D materials. However, since typicallyρxxremains finite and a quantitative relation betweenσxyand the conductance quantume2/hcould not be established, the role of quantum Hall physics in 3D remains unsettled. Following a recent series of exciting experiments, the QHE in 3D has now returned to the center stage. Here, we summarize the leap in understanding of 3D matter in magnetic fields emerging from these experiments.


Assuntos
Elétrons , Campos Magnéticos , Física
2.
Phys Rev Lett ; 131(25): 256601, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38181369

RESUMO

One of the most important practical hallmarks of topological matter is the presence of topologically protected, exponentially localized edge states at interfaces of regions characterized by unequal topological invariants. Here, we show that, even when driven far from their equilibrium ground state, Chern insulators can inherit topological edge features from their parent Hamiltonian. In particular, we show that the asymptotic long-time approach of the nonequilibrium steady state, governed by a Lindblad master equation, can exhibit edge-selective extremal damping. This phenomenon derives from edge states of non-Hermitian extensions of the parent Chern insulator Hamiltonian. The combination of (non-Hermitian) topology and dissipation hence allows one to design topologically robust, spatially localized damping patterns.

3.
Nature ; 547(7663): 324-327, 2017 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-28726829

RESUMO

The conservation laws, such as those of charge, energy and momentum, have a central role in physics. In some special cases, classical conservation laws are broken at the quantum level by quantum fluctuations, in which case the theory is said to have quantum anomalies. One of the most prominent examples is the chiral anomaly, which involves massless chiral fermions. These particles have their spin, or internal angular momentum, aligned either parallel or antiparallel with their linear momentum, labelled as left and right chirality, respectively. In three spatial dimensions, the chiral anomaly is the breakdown (as a result of externally applied parallel electric and magnetic fields) of the classical conservation law that dictates that the number of massless fermions of each chirality are separately conserved. The current that measures the difference between left- and right-handed particles is called the axial current and is not conserved at the quantum level. In addition, an underlying curved space-time provides a distinct contribution to a chiral imbalance, an effect known as the mixed axial-gravitational anomaly, but this anomaly has yet to be confirmed experimentally. However, the presence of a mixed gauge-gravitational anomaly has recently been tied to thermoelectrical transport in a magnetic field, even in flat space-time, suggesting that such types of mixed anomaly could be experimentally probed in condensed matter systems known as Weyl semimetals. Here, using a temperature gradient, we observe experimentally a positive magneto-thermoelectric conductance in the Weyl semimetal niobium phosphide (NbP) for collinear temperature gradients and magnetic fields that vanishes in the ultra-quantum limit, when only a single Landau level is occupied. This observation is consistent with the presence of a mixed axial-gravitational anomaly, providing clear evidence for a theoretical concept that has so far eluded experimental detection.

4.
Phys Rev Lett ; 122(4): 046402, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30768291

RESUMO

We study the effect of long-ranged interactions on Weyl semimetals. Such interactions can give rise to unpaired Weyl nodes, which we demonstrate by explicitly constructing a system with just a single node-a situation that is fundamentally forbidden by fermion doubling in noninteracting band structures. Adding a magnetic field, we investigate the fate of the chiral anomaly. Remarkably, as long as a system exhibits a single Weyl node in the absence of magnetic fields, arbitrarily weak fields qualitatively restore the lowest Landau level structure of a noninteracting Weyl semimetal. This underlines the universality of the chiral anomaly in the context of Weyl semimetals. We furthermore demonstrate how the topologically protected Fermi-arc surface states are modified by long-ranged interactions.

5.
Artigo em Inglês | MEDLINE | ID: mdl-32726771

RESUMO

We study the effects of pseudo-magnetic fields on Weyl semimetals with over-tilted Weyl cones, or type II cones. We compare the phenomenology of the resulting pseudo-Landau levels in the type II Weyl semimetal to the known case of type I cones. We predict that due to the nature of the chiral Landau level resulting from a magnetic field, a pseudo-magnetic field, or their combination, the optical conductivity can be utilized to detect a type II phase and deduce the direction of the tilt. Finally, we discuss ways to engineer homogeneous and inhomogeneous type II semimetals via generalizations of known layered constructions in order to create controlled pseudo-magnetic fields and over-tilted cones.

6.
Sci Rep ; 10(1): 2386, 2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-32024959

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

7.
Sci Rep ; 9(1): 2095, 2019 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-30765755

RESUMO

We present a high magnetic field study of NbP-a member of the monopnictide Weyl semimetal (WSM) family. While the monoarsenides (NbAs and TaAs) have topologically distinct left and right-handed Weyl fermi surfaces, NbP is argued to be "topologically trivial" due to the fact that all pairs of Weyl nodes are encompassed by a single Fermi surface. We use torque magnetometry to measure the magnetic response of NbP up to 60 tesla and uncover a Berry paramagnetic response, characteristic of the topological Weyl nodes, across the entire field range. At the quantum limit B* (≈32 T), τ/B experiences a change in slope when the chemical potential enters the last Landau level. Our calculations confirm that this magnetic response arises from band topology of the Weyl pocket, even though the Fermi surface encompasses both Weyl nodes at zero magnetic field. We also find that the magnetic field pulls the chemical potential to the chiral n = 0 Landau level in the quantum limit, providing a disorder-free way of accessing chiral Weyl fermions in systems that are "not quite" WSMs in zero magnetic field.

8.
Science ; 366(6462): 221-226, 2019 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-31601766

RESUMO

Although crystals of strongly correlated metals exhibit a diverse set of electronic ground states, few approaches exist for spatially modulating their properties. In this study, we demonstrate disorder-free control, on the micrometer scale, over the superconducting state in samples of the heavy-fermion superconductor CeIrIn5 We pattern crystals by focused ion beam milling to tailor the boundary conditions for the elastic deformation upon thermal contraction during cooling. The resulting nonuniform strain fields induce complex patterns of superconductivity, owing to the strong dependence of the transition temperature on the strength and direction of strain. These results showcase a generic approach to manipulating electronic order on micrometer length scales in strongly correlated matter without compromising the cleanliness, stoichiometry, or mean free path.

9.
Sci Adv ; 3(5): e1602983, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28560340

RESUMO

By introducing a superconducting gap in Weyl or Dirac semimetals, the superconducting state inherits the nontrivial topology of their electronic structure. As a result, Weyl superconductors are expected to host exotic phenomena, such as nonzero-momentum pairing due to their chiral node structure, or zero-energy Majorana modes at the surface. These are of fundamental interest to improve our understanding of correlated topological systems, and, moreover, practical applications in phase-coherent devices and quantum applications have been proposed. Proximity-induced superconductivity promises to allow these experiments on nonsuperconducting Weyl semimetals. We show a new route to reliably fabricate superconducting microstructures from the nonsuperconducting Weyl semimetal NbAs under ion irradiation. The significant difference in the surface binding energy of Nb and As leads to a natural enrichment of Nb at the surface during ion milling, forming a superconducting surface layer (Tc ~ 3.5 K). Being formed from the target crystal itself, the ideal contact between the superconductor and the bulk may enable an effective gapping of the Weyl nodes in the bulk because of the proximity effect. Simple ion irradiation may thus serve as a powerful tool for the fabrication of topological quantum devices from monoarsenides, even on an industrial scale.

10.
Science ; 365(6451): 324, 2019 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-31346055
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA