RESUMO
Zinc finger (ZNF) motifs are some of the most frequently occurring domains in the human genome. It was only recently that ZNF proteins emerged as key regulators of genome integrity in mammalian cells. In this study, we report a new role for the Krüppel-type ZNF-containing protein ZNF432 as a novel poly(ADP-ribose) (PAR) reader that regulates the DNA damage response. We show that ZNF432 is recruited to DNA lesions via DNA- and PAR-dependent mechanisms. Remarkably, ZNF432 stimulates PARP-1 activity in vitro and in cellulo. Knockdown of ZNF432 inhibits phospho-DNA-PKcs and increases RAD51 foci formation following irradiation. Moreover, purified ZNF432 preferentially binds single-stranded DNA and impairs EXO1-mediated DNA resection. Consequently, the loss of ZNF432 in a cellular system leads to resistance to PARP inhibitors while its overexpression results in sensitivity. Taken together, our results support the emerging concept that ZNF-containing proteins can modulate PARylation, which can be embodied by the pivotal role of ZNF432 to finely balance the outcome of PARPi response by regulating homologous recombination.
Assuntos
Poli ADP Ribosilação , Poli Adenosina Difosfato Ribose , Humanos , DNA/genética , DNA/metabolismo , Dano ao DNA , Reparo do DNA , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli Adenosina Difosfato Ribose/metabolismoRESUMO
Recent studies indicate that replication checkpoint modulators (RCMs) such as inhibitors of CHK1, ATR, and WEE1 have promising monotherapy activity in solid tumors, including platinum-resistant high grade serous ovarian cancer (HGSOC). However, clinical response rates are generally below 30%. While RCM-induced DNA damage has been extensively examined in preclinical and clinical studies, the link between replication checkpoint interruption and tumor shrinkage remains incompletely understood. Here we utilized HGSOC cell lines and patient-derived xenografts (PDXs) to study events leading from RCM treatment to ovarian cancer cell death. These studies show that RCMs increase CDC25A levels and CDK2 signaling in vitro, leading to dysregulated cell cycle progression and increased replication stress in HGSOC cell lines independent of homologous recombination status. These events lead to sequential activation of JNK and multiple BH3-only proteins, including BCL2L11/BIM, BBC3/PUMA and the BMF, all of which are required to fully initiate RCM-induced apoptosis. Activation of the same signaling pathway occurs in HGSOC PDXs that are resistant to poly(ADP-ribose) polymerase inhibitors but respond to RCMs ex vivo with a decrease in cell number in 3-dimensional culture and in vivo with xenograft shrinkage or a significantly diminished growth rate. These findings identify key cell death-initiating events that link replication checkpoint inhibition to antitumor response in ovarian cancer.
Assuntos
Apoptose , Neoplasias Ovarianas , Ensaios Antitumorais Modelo de Xenoenxerto , Feminino , Humanos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Camundongos , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Reguladoras de Apoptose/genética , Replicação do DNA/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacosRESUMO
Mitochondrial outer membrane permeabilization (MOMP), a key step in the intrinsic apoptotic pathway, is incompletely understood. Current models emphasize the role of BH3-only BCL2 family members in BAX and BAK activation. Here we demonstrate concentration-dependent BAK autoactivation under cell-free conditions and provide evidence that this autoactivation plays a key role in regulating the intrinsic apoptotic pathway in intact cells. In particular, we show that up to 80% of BAK (but not BAX) in lymphohematopoietic cell lines is oligomerized and bound to anti-apoptotic BCL2 family members in the absence of exogenous death stimuli. The extent of this constitutive BAK oligomerization is diminished by BAK knockdown and unaffected by BIM or PUMA down-regulation. Further analysis indicates that sensitivity of cells to BH3 mimetics reflects the identity of the anti-apoptotic proteins to which BAK is constitutively bound, with extensive BCLXLâ¢BAK complexes predicting navitoclax sensitivity, and extensive MCL1â¢BAK complexes predicting A1210477 sensitivity. Moreover, high BAK expression correlates with sensitivity of clinical acute myelogenous leukemia to chemotherapy, whereas low BAK levels correlate with resistance and relapse. Collectively, these results inform current understanding of MOMP and provide new insight into the ability of BH3 mimetics to induce apoptosis without directly activating BAX or BAK.
Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Ativação Transcricional/genética , Proteína Killer-Antagonista Homóloga a bcl-2/genética , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Compostos de Anilina/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Apoptose/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Células Jurkat , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/fisiopatologia , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sulfonamidas/farmacologia , Proteína bcl-X/metabolismoRESUMO
OBJECTIVE: Poly(ADP-ribose) polymerase (PARP) inhibitors have shown substantial activity in homologous recombination- (HR-) deficient ovarian cancer and are undergoing testing in other HR-deficient tumors. For reasons that are incompletely understood, not all patients with HR-deficient cancers respond to these agents. Preclinical studies have demonstrated that changes in alternative DNA repair pathways affect PARP inhibitor (PARPi) sensitivity in ovarian cancer models. This has not previously been assessed in the clinical setting. METHODS: Clonogenic and plasmid-based HR repair assays were performed to compare BRCA1-mutant COV362 ovarian cancer cells with or without 53BP1 gene deletion. Archival biopsies from ovarian cancer patients in the phase I, open-label clinical trial of PARPi ABT-767 were stained for PARP1, RAD51, 53BP1 and multiple components of the nonhomologous end-joining (NHEJ) DNA repair pathway. Modified histochemistry- (H-) scores were determined for each repair protein in each sample. HRD score was determined from tumor DNA. RESULTS: 53BP1 deletion increased HR in BRCA1-mutant COV362 cells and decreased PARPi sensitivity in vitro. In 36 women with relapsed ovarian cancer, responses to the PARPi ABT-767 were observed exclusively in cancers with HR deficiency. In this subset, 7 of 18 patients (39%) had objective responses. The actual HRD score did not further correlate with change from baseline tumor volume (râ¯=â¯0.050; pâ¯=â¯0.87). However, in the HR-deficient subset, decreased 53BP1 H-score was associated with decreased antitumor efficacy of ABT-767 (râ¯=â¯-0.69, pâ¯=â¯0.004). CONCLUSION: Differences in complementary repair pathways, particularly 53BP1, correlate with PARPi response of HR-deficient ovarian cancers.
Assuntos
Benzamidas/administração & dosagem , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Inibidores de Poli(ADP-Ribose) Polimerases/administração & dosagem , Sulfonamidas/administração & dosagem , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética , Linhagem Celular Tumoral , Reparo do DNA , Resistencia a Medicamentos Antineoplásicos , Feminino , Genes BRCA1 , Genes BRCA2 , Recombinação Homóloga , Humanos , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Poli(ADP-Ribose) Polimerase-1/biossíntese , Poli(ADP-Ribose) Polimerase-1/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/biossíntese , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/deficiênciaRESUMO
Follicular lymphoma (FL), an indolent neoplasm caused by a t(14;18) chromosomal translocation that juxtaposes the BCL2 gene and immunoglobulin locus, has a variable clinical course and frequently undergoes transformation to an aggressive lymphoma. Although BCL2 mutations have been previously described, their relationship to FL progression remains unclear. In this study, we evaluated the frequency and nature of BCL2 mutations in 2 independent cohorts of grade 1 and 2 FLs, along with the correlation between BCL2 mutations, transformation risk, and survival. The prevalence of BCL2 coding sequence mutations was 12% in FL at diagnosis and 53% at transformation (P < .0001). The presence of these BCL2 mutations at diagnosis correlated with an increased risk of transformation (hazard ratio 3.6; 95% CI, 2.0-6.2; P < .0001) and increased risk of death due to lymphoma (median survival of 9.5 years with BCL2 mutations vs 20.4 years without; P = .012). In a multivariate analysis, BCL2 mutations and high FL international prognostic index were independent risk factors for transformation and death due to lymphoma. Some mutant Bcl-2 proteins exhibited enhanced antiapoptotic capacity in vitro. Accordingly, BCL2 mutations can affect antiapoptotic Bcl-2 function, are associated with increased activation-induced cytidine deaminase expression, and correlate with increased risk of transformation and death due to lymphoma.
Assuntos
Transformação Celular Neoplásica/genética , Linfoma Folicular/genética , Linfoma Folicular/mortalidade , Mutação , Proteínas Proto-Oncogênicas c-bcl-2/genética , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Cromossomos Humanos Par 14/genética , Cromossomos Humanos Par 14/metabolismo , Cromossomos Humanos Par 18/genética , Cromossomos Humanos Par 18/metabolismo , Estudos de Coortes , Citidina Desaminase/biossíntese , Citidina Desaminase/genética , Intervalo Livre de Doença , Feminino , Regulação Enzimológica da Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Imunoglobulinas/genética , Imunoglobulinas/metabolismo , Linfoma Folicular/metabolismo , Masculino , Pessoa de Meia-Idade , Prevalência , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Fatores de Risco , Taxa de SobrevidaRESUMO
Bcl-2, the founding member of a family of apoptotic regulators, was initially identified as the protein product of a gene that is translocated and overexpressed in greater than 85% of follicular lymphomas (FLs). Thirty years later we now understand that anti-apoptotic Bcl-2 family members modulate the intrinsic apoptotic pathway by binding and neutralizing the mitochondrial permeabilizers Bax and Bak as well as a variety of pro-apoptotic proteins, including the cellular stress sensors Bim, Bid, Puma, Bad, Bmf and Noxa. Despite extensive investigation of all of these proteins, important questions remain. For example, how Bax and Bak breach the outer mitochondrial membrane remains poorly understood. Likewise, how the functions of anti-apoptotic Bcl-2 family members such as eponymous Bcl-2 are affected by phosphorylation or cancer-associated mutations has been incompletely defined. Finally, whether Bcl-2 family members can be successfully targeted for therapeutic advantage is only now being investigated in the clinic. Here we review recent advances in understanding Bcl-2 family biology and biochemistry that begin to address these questions.
Assuntos
Progressão da Doença , Neoplasias/metabolismo , Neoplasias/patologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Sequência de Aminoácidos , Animais , Apoptose , Humanos , Modelos Biológicos , Dados de Sequência Molecular , Terapia de Alvo Molecular , Proteínas Proto-Oncogênicas c-bcl-2/química , Proteínas Proto-Oncogênicas c-bcl-2/genéticaRESUMO
OBJECTIVE: Poly(ADP-ribose) polymerase (PARP) inhibitors have yielded encouraging responses in high-grade serous ovarian carcinomas (HGSOCs), but the optimal treatment setting remains unknown. We assessed the effect of niraparib on HGSOC patient-derived xenograft (PDX) models as well as the relationship between certain markers of homologous recombination (HR) status, including BRCA1/2 mutations and formation of RAD51 foci after DNA damage, and response of these PDXs to niraparib in vivo. METHODS: Massively parallel sequencing was performed on HGSOCs to identify mutations contributing to HR deficiency. HR pathway integrity was assessed using fluorescence microscopy-based RAD51 focus formation assays. Effects of niraparib (MK-4827) on treatment-naïve PDX tumor growth as monotherapy, in combination with carboplatin/paclitaxel, and as maintenance therapy were assessed by transabdominal ultrasound. Niraparib responses were correlated with changes in levels of poly(ADP-ribose), PARP1, and repair proteins by western blotting. RESULTS: Five PDX models were evaluated in vivo. Tumor regressions were induced by single-agent niraparib in one of two PDX models with deleterious BRCA2 mutations and in a PDX with RAD51C promoter methylation. Diminished formation of RAD51 foci failed to predict response, but Artemis loss was associated with resistance. Niraparib generally failed to enhance responses to carboplatin/paclitaxel chemotherapy, but maintenance niraparib therapy delayed progression in a BRCA2-deficient PDX. CONCLUSIONS: Mutations in HR genes are neither necessary nor sufficient to predict response to niraparib. Assessment of repair status through multiple complementary assays is needed to guide PARP inhibitor therapy, design future clinical trials and identify ovarian cancer patients most likely to benefit from PARP inhibition.
Assuntos
Recombinação Homóloga , Indazóis/uso terapêutico , Neoplasias Ovarianas/tratamento farmacológico , Piperidinas/uso terapêutico , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Proteínas de Ligação a DNA/análise , Proteínas de Ligação a DNA/genética , Feminino , Genes BRCA2 , Humanos , Neoplasias Ovarianas/genética , Regiões Promotoras GenéticasRESUMO
Recombinant human tumor necrosis factor-α-related apoptosis inducing ligand (TRAIL), agonistic monoclonal antibodies to TRAIL receptors, and small molecule TRAIL receptor agonists are in various stages of preclinical and early phase clinical testing as potential anticancer drugs. Accordingly, there is substantial interest in understanding factors that affect sensitivity to these agents. In the present study we observed that the poly(ADP-ribose) polymerase (PARP) inhibitors olaparib and veliparib sensitize the myeloid leukemia cell lines ML-1 and K562, the ovarian cancer line PEO1, non-small cell lung cancer line A549, and a majority of clinical AML isolates, but not normal marrow, to TRAIL. Further analysis demonstrated that PARP inhibitor treatment results in activation of the FAS and TNFRSF10B (death receptor 5 (DR5)) promoters, increased Fas and DR5 mRNA, and elevated cell surface expression of these receptors in sensitized cells. Chromatin immunoprecipitation demonstrated enhanced binding of the transcription factor Sp1 to the TNFRSF10B promoter in the presence of PARP inhibitor. Knockdown of PARP1 or PARP2 (but not PARP3 and PARP4) not only increased expression of Fas and DR5 at the mRNA and protein level, but also recapitulated the sensitizing effects of the PARP inhibition. Conversely, Sp1 knockdown diminished the PARP inhibitor effects. In view of the fact that TRAIL is part of the armamentarium of natural killer cells, these observations identify a new facet of PARP inhibitor action while simultaneously providing the mechanistic underpinnings of a novel therapeutic combination that warrants further investigation.
Assuntos
Apoptose/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Inibidores de Poli(ADP-Ribose) Polimerases , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/biossíntese , Receptor fas/biossíntese , Humanos , Células K562 , Neoplasias/genética , Neoplasias/metabolismo , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , Elementos de Resposta , Fator de Transcrição Sp1/genética , Fator de Transcrição Sp1/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Receptor fas/genéticaRESUMO
The CXCR4 chemokine receptor promotes survival of many different cell types. Here, we describe a previously unsuspected role for CXCR4 as a potent inducer of apoptosis in acute myeloid leukemia (AML) cell lines and a subset of clinical AML samples. We show that SDF-1, the sole ligand for CXCR4, induces the expected migration and ERK activation in the KG1a AML cell line transiently overexpressing CXCR4, but ERK activation did not lead to survival. Instead, SDF-1 treatment led via a CXCR4-dependent mechanism to apoptosis, as evidenced by increased annexin V staining, condensation of chromatin, and cleavage of both procaspase-3 and PARP. This SDF-1-induced death pathway was partially inhibited by hypoxia, which is often found in the bone marrow of AML patients. SDF-1-induced apoptosis was inhibited by dominant negative procaspase-9 but not by inhibition of caspase-8 activation, implicating the intrinsic apoptotic pathway. Further analysis showed that this pathway was activated by multiple mechanisms, including up-regulation of Bak at the level of mRNA and protein, stabilization of the Bak activator Noxa, and down-regulation of antiapoptotic Bcl-XL. Furthermore, adjusting expression levels of Bak, Bcl-XL, or Noxa individually altered the level of apoptosis in AML cells, suggesting that the combined modulation of these family members by SDF-1 coordinates their interplay to produce apoptosis. Thus, rather than mediating survival, SDF-1 may be a means to induce apoptosis of CXCR4-expressing AML cells directly in the SDF-1-rich bone marrow microenvironment if the survival cues of the bone marrow are disrupted.
Assuntos
Apoptose , Regulação Leucêmica da Expressão Gênica , Leucemia Mieloide Aguda/metabolismo , Sistema de Sinalização das MAP Quinases , Proteínas Proto-Oncogênicas c-bcl-2/biossíntese , Receptores CXCR4/metabolismo , Proteína Killer-Antagonista Homóloga a bcl-2/biossíntese , Proteína bcl-X/biossíntese , Anexina A5/genética , Anexina A5/metabolismo , Sobrevivência Celular/genética , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Regulação para Baixo/genética , Feminino , Células HEK293 , Humanos , Células Jurkat , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Masculino , Estabilidade Proteica , Proteínas Proto-Oncogênicas c-bcl-2/genética , Receptores CXCR4/genética , Células U937 , Regulação para Cima/genética , Proteína Killer-Antagonista Homóloga a bcl-2/genética , Proteína bcl-X/genéticaRESUMO
Although farnesyltransferase inhibitors have shown promising activity in relapsed lymphoma and sporadic activity in acute myelogenous leukemia, their mechanism of cytotoxicity is incompletely understood, making development of predictive biomarkers difficult. In the present study, we examined the action of tipifarnib in human acute myelogenous leukemia cell lines and clinical samples. In contrast to the Ras/MEK/ERK pathway-mediated Bim upregulation that is responsible for tipifarnib-induced killing of malignant lymphoid cells, inhibition of Rheb-induced mTOR signaling followed by dose-dependent upregulation of Bax and Puma occurred in acute myelogenous leukemia cell lines undergoing tipifarnib-induced apoptosis. Similar Bax and Puma upregulation occurred in serial bone marrow samples harvested from a subset of acute myelogenous leukemia patients during tipifarnib treatment. Expression of FTI-resistant Rheb M184L, like knockdown of Bax or Puma, diminished tipifarnib-induced killing. Further analysis demonstrated that increased Bax and Puma levels reflect protein stabilization rather than increased gene expression. In U937 cells selected for tipifarnib resistance, neither inhibition of signaling downstream of Rheb nor Bax and Puma stabilization occurred. Collectively, these results not only identify a pathway downstream from Rheb that contributes to tipifarnib cytotoxicity in human acute myelogenous leukemia cells, but also demonstrate that FTI-induced killing of lymphoid versus myeloid cells reflects distinct biochemical mechanisms downstream of different farnesylated substrates. (ClinicalTrials.gov identifier NCT00602771).
Assuntos
Antineoplásicos/farmacologia , Farnesiltranstransferase/antagonistas & inibidores , Leucemia Mieloide Aguda/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Neuropeptídeos/metabolismo , Quinolonas/farmacologia , Proteína X Associada a bcl-2/metabolismo , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Farnesiltranstransferase/metabolismo , Humanos , Prenilação/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas/metabolismo , Proteína Enriquecida em Homólogo de Ras do Encéfalo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Células U937RESUMO
BH3 mimetics, including the BCL2/BCLXL/BCLw inhibitor navitoclax and MCL1 inhibitors S64315 and tapotoclax, have undergone clinical testing for a variety of neoplasms. Because of toxicities, including thrombocytopenia after BCLXL inhibition as well as hematopoietic, hepatic and possible cardiac toxicities after MCL1 inhibition, there is substantial interest in finding agents that can safely sensitize neoplastic cells to these BH3 mimetics. Building on the observation that BH3 mimetic monotherapy induces AMP kinase (AMPK) activation in multiple acute leukemia cell lines, we report that the AMPK inhibitors (AMPKis) dorsomorphin and BAY-3827 sensitize these cells to navitoclax or MCL1 inhibitors. Cell fractionation and phosphoproteomic analyses suggest that sensitization by dorsomorphin involves dephosphorylation of the proapoptotic BCL2 family member BAD at Ser75 and Ser99, leading BAD to translocate to mitochondria and inhibit BCLXL. Consistent with these results, BAD knockout or mutation to BAD S75E/S99E abolishes the sensitizing effects of dorsomorphin. Conversely, dorsomorphin synergizes with navitoclax or the MCL1 inhibitor S63845 to induce cell death in primary acute leukemia samples ex vivo and increases the antitumor effects of navitoclax or S63845 in several xenograft models in vivo with little or no increase in toxicity in normal tissues. These results suggest that AMPK inhibition can sensitize acute leukemia to multiple BH3 mimetics, potentially allowing administration of lower doses while inducing similar antineoplastic effects.
Assuntos
Proteínas Quinases Ativadas por AMP , Compostos de Anilina , Proteína de Sequência 1 de Leucemia de Células Mieloides , Pirimidinas , Sulfonamidas , Proteína bcl-X , Humanos , Animais , Compostos de Anilina/farmacologia , Sulfonamidas/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Camundongos , Proteína bcl-X/metabolismo , Proteína bcl-X/antagonistas & inibidores , Linhagem Celular Tumoral , Pirimidinas/farmacologia , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/antagonistas & inibidores , Pirazóis/farmacologia , Proteína de Morte Celular Associada a bcl/metabolismo , Apoptose/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Leucemia/tratamento farmacológico , Leucemia/patologia , Leucemia/metabolismo , Fosforilação/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Sinergismo FarmacológicoRESUMO
The mechanism of cytotoxicity of farnesyltransferase inhibitors is incompletely understood and seems to vary depending on the cell type. To identify potential determinants of sensitivity or resistance for study in the accompanying clinical trial (Witzig et al, page 4882), we examined the mechanism of cytotoxicity of tipifarnib in human lymphoid cell lines. Based on initial experiments showing that Jurkat variants lacking Fas-associated death domain or procaspase-8 undergo tipifarnib-induced apoptosis, whereas cells lacking caspase-9 or overexpressing Bcl-2 do not, we examined changes in Bcl-2 family members. Tipifarnib caused dose-dependent up-regulation of Bim in lymphoid cell lines (Jurkat, Molt3, H9, DoHH2, and RL) that undergo tipifarnib-induced apoptosis but not in lines (SKW6.4 and Hs445) that resist tipifarnib-induced apoptosis. Further analysis demonstrated that increased Bim levels reflect inhibition of signaling from c-Raf to MEK1/2 and ERK1/2. Additional experiments showed that down-regulation of the Ras guanine nucleotide exchange factor RasGRP1 diminished tipifarnib sensitivity, suggesting that H-Ras or N-Ras is a critical farnesylation target upstream of c-Raf in lymphoid cells. These results not only trace a pathway through c-Raf to Bim that contributes to tipifarnib cytotoxicity in human lymphoid cells but also identify potential determinants of sensitivity to this agent.
Assuntos
Proteínas Reguladoras de Apoptose/genética , Citotoxinas/farmacologia , Inibidores Enzimáticos/farmacologia , Farnesiltranstransferase/antagonistas & inibidores , Linfócitos/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteínas de Membrana/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Reguladoras de Apoptose/metabolismo , Proteína 11 Semelhante a Bcl-2 , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Células Jurkat , Linfócitos/metabolismo , Linfócitos/fisiologia , Sistema de Sinalização das MAP Quinases/fisiologia , Proteínas de Membrana/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas/metabolismo , Regulação para Cima/efeitos dos fármacosRESUMO
How BAK and BAX induce mitochondrial outer membrane (MOM) permeabilization (MOMP) during apoptosis is incompletely understood. Here we have used molecular dynamics simulations, surface plasmon resonance, and assays for membrane permeabilization in vitro and in vivo to assess the structure and function of selected BAK subdomains and their derivatives. Results of these studies demonstrate that BAK helical regions α5 and α6 bind the MOM lipid cardiolipin. While individual peptides corresponding to these helical regions lack the full biological activity of BAK, tandem peptides corresponding to α4-α5, α5-α6, or α6-α7/8 can localize exogenous proteins to mitochondria, permeabilize liposomes composed of MOM lipids, and cause MOMP in the absence of the remainder of the BAK protein. Importantly, the ability of these tandem helices to induce MOMP under cell-free conditions is diminished by mutations that disrupt the U-shaped helix-turn-helix structure of the tandem peptides or decrease their lipid binding. Likewise, BAK-induced apoptosis in intact cells is diminished by CLS1 gene interruption, which decreases mitochondrial cardiolipin content, or by BAK mutations that disrupt the U-shaped tandem peptide structure or diminish lipid binding. Collectively, these results suggest that BAK structural rearrangements during apoptosis might mobilize helices involved in specific protein-lipid interactions that are critical for MOMP.
Assuntos
Cardiolipinas , Citocromos c , Citocromos c/metabolismo , Cardiolipinas/metabolismo , Proteína X Associada a bcl-2/metabolismo , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Apoptose , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismoRESUMO
Nonalcoholic steatohepatitis is characterized by hepatic steatosis, elevated levels of circulating free fatty acids (FFA), endoplasmic reticulum (ER) stress, and hepatocyte lipoapoptosis. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) death receptor 5 (DR5) is significantly elevated in patients with nonalcoholic steatohepatitis, and steatotic hepatocytes demonstrate increased sensitivity to TRAIL-mediated cell death. Nonetheless, a role for TRAIL and/or DR5 in mediating lipoapoptotic pathways is unexplored. Here, we examined the contribution of DR5 death signaling to lipoapoptosis by free fatty acids. The toxic saturated free fatty acid palmitate induces an increase in DR5 mRNA and protein expression in Huh-7 human hepatoma cells leading to DR5 localization into lipid rafts, cell surface receptor clustering with subsequent recruitment of the initiator caspase-8, and ultimately cellular demise. Lipoapoptosis by palmitate was not inhibited by a soluble human recombinant DR5-Fc chimera protein suggesting that DR5 cytotoxic signaling is ligand-independent. Hepatocytes from murine TRAIL receptor knock-out mice (DR(-/-)) displayed reduced palmitate-mediated lipotoxicity. Likewise, knockdown of DR5 or caspase-8 expression by shRNA technology attenuated palmitate-induced Bax activation and apoptosis in Huh-7 cells, without altering induction of ER stress markers. Similar observations were verified in other cell models. Finally, knockdown of CHOP, an ER stress-mediated transcription factor, reduced DR5 up-regulation and DR5-mediated caspase-8 activation upon palmitate treatment. Collectively, these results suggest that ER stress-induced CHOP activation by palmitate transcriptionally up-regulates DR5, likely resulting in ligand-independent cytotoxic signaling by this death receptor.
Assuntos
Apoptose , Fígado Gorduroso/metabolismo , Hepatócitos/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Animais , Caspase 8/genética , Caspase 8/metabolismo , Linhagem Celular Tumoral , Inibidores Enzimáticos/farmacologia , Fígado Gorduroso/genética , Fígado Gorduroso/patologia , Técnicas de Silenciamento de Genes , Hepatócitos/patologia , Humanos , Microdomínios da Membrana/genética , Microdomínios da Membrana/metabolismo , Microdomínios da Membrana/patologia , Camundongos , Camundongos Knockout , Ácido Palmítico/farmacologia , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , Fator de Transcrição CHOP/genética , Fator de Transcrição CHOP/metabolismo , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/genética , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismoRESUMO
Inhibitors of the lipogenic enzyme fatty acid synthase (FASN) have attracted much attention in the last decade as potential targeted cancer therapies. However, little is known about the molecular determinants of cancer cell sensitivity to FASN inhibitors (FASNis), which is a major roadblock to their therapeutic application. Here, we find that pharmacological starvation of endogenously produced FAs is a previously unrecognized metabolic stress that heightens mitochondrial apoptotic priming and favors cell death induction by BH3 mimetic inhibitors. Evaluation of the death decision circuits controlled by the BCL-2 family of proteins revealed that FASN inhibition is accompanied by the upregulation of the pro-death BH3-only proteins BIM, PUMA, and NOXA. Cell death triggered by FASN inhibition, which causally involves a palmitate/NADPH-related redox imbalance, is markedly diminished by concurrent loss of BIM or PUMA, suggesting that FASN activity controls cancer cell survival by fine-tuning the BH3 only proteins-dependent mitochondrial threshold for apoptosis. FASN inhibition results in a heightened mitochondrial apoptosis priming, shifting cells toward a primed-for-death state "addicted" to the anti-apoptotic protein BCL-2. Accordingly, co-administration of a FASNi synergistically augments the apoptosis-inducing activity of the dual BCL-XL/BCL-2 inhibitor ABT-263 (navitoclax) and the BCL-2 specific BH3-mimetic ABT-199 (venetoclax). FASN inhibition, however, fails to sensitize breast cancer cells to MCL-1- and BCL-XL-selective inhibitors such as S63845 and A1331852. A human breast cancer xenograft model evidenced that oral administration of the only clinically available FASNi drastically sensitizes FASN-addicted breast tumors to ineffective single-agents navitoclax and venetoclax in vivo. In summary, a novel FASN-driven facet of the mitochondrial priming mechanistically links the redox-buffering mechanism of FASN activity to the intrinsic apoptotic threshold in breast cancer cells. Combining next-generation FASNis with BCL-2-specific BH3 mimetics that directly activate the apoptotic machinery might generate more potent and longer-lasting antitumor responses in a clinical setting.
Assuntos
Ácido Graxo Sintases/metabolismo , Mitocôndrias/metabolismo , Neoplasias/genética , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos Nus , TransfecçãoRESUMO
Although inhibitors of the kinases CHK1, ATR, and WEE1 are undergoing clinical testing, it remains unclear how these three classes of agents kill susceptible cells and whether they utilize the same cytotoxic mechanism. Here we observed that CHK1 inhibition induces apoptosis in a subset of acute leukemia cell lines in vitro, including TP53-null acute myeloid leukemia (AML) and BCR/ABL-positive acute lymphoid leukemia (ALL), and inhibits leukemic colony formation in clinical AML samples ex vivo. In further studies, downregulation or inhibition of CHK1 triggered signaling in sensitive human acute leukemia cell lines that involved CDK2 activation followed by AP1-dependent TNF transactivation, TNFα production, and engagement of a TNFR1- and BID-dependent apoptotic pathway. AML lines that were intrinsically resistant to CHK1 inhibition exhibited high CHK1 expression and were sensitized by CHK1 downregulation. Signaling through this same CDK2-AP1-TNF cytotoxic pathway was also initiated by ATR or WEE1 inhibitors in vitro and during CHK1 inhibitor treatment of AML xenografts in vivo. Collectively, these observations not only identify new contributors to the antileukemic cell action of CHK1, ATR, and WEE1 inhibitors, but also delineate a previously undescribed pathway leading from aberrant CDK2 activation to death ligand-induced killing that can potentially be exploited for acute leukemia treatment. SIGNIFICANCE: This study demonstrates that replication checkpoint inhibitors can kill AML cells through a pathway involving AP1-mediated TNF gene activation and subsequent TP53-independent, TNFα-induced apoptosis, which can potentially be exploited clinically.
Assuntos
Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Pirazinas/farmacologia , Pirazóis/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Animais , Apoptose , Proliferação de Células , Feminino , Humanos , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Células Tumorais Cultivadas , Fator de Necrose Tumoral alfa/genética , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Acquired PARP inhibitor (PARPi) resistance in BRCA1- or BRCA2-mutant ovarian cancer often results from secondary mutations that restore expression of functional protein. RAD51C is a less commonly studied ovarian cancer susceptibility gene whose promoter is sometimes methylated, leading to homologous recombination (HR) deficiency and PARPi sensitivity. For this study, the PARPi-sensitive patient-derived ovarian cancer xenograft PH039, which lacks HR gene mutations but harbors RAD51C promoter methylation, was selected for PARPi resistance by cyclical niraparib treatment in vivo. PH039 acquired PARPi resistance by the third treatment cycle and grew through subsequent treatment with either niraparib or rucaparib. Transcriptional profiling throughout the course of resistance development showed widespread pathway level changes along with a marked increase in RAD51C mRNA, which reflected loss of RAD51C promoter methylation. Analysis of ovarian cancer samples from the ARIEL2 Part 1 clinical trial of rucaparib monotherapy likewise indicated an association between loss of RAD51C methylation prior to on-study biopsy and limited response. Interestingly, the PARPi resistant PH039 model remained platinum sensitive. Collectively, these results not only indicate that PARPi treatment pressure can reverse RAD51C methylation and restore RAD51C expression, but also provide a model for studying the clinical observation that PARPi and platinum sensitivity are sometimes dissociated.
RESUMO
The release of cytochrome c from mitochondria, which leads to activation of the intrinsic apoptotic pathway, is regulated by interactions of Bax and Bak with antiapoptotic Bcl-2 family members. The factors that regulate these interactions are, at the present time, incompletely understood. Recent studies showing preferences in binding between synthetic Bcl-2 homology domain 3 and antiapoptotic Bcl-2 family members in vitro have suggested that the antiapoptotic proteins Mcl-1 and Bcl-x(L), but not Bcl-2, restrain proapoptotic Bak from inducing mitochondrial membrane permeabilization and apoptosis. Here we show that Bak protein has a much higher affinity than the 26-amino acid Bak Bcl-2 homology domain 3 for Bcl-2, that some naturally occurring Bcl-2 allelic variants have an affinity for full-length Bak that is only 3-fold lower than that of Mcl-1, and that endogenous levels of these Bcl-2 variants (which are as much as 40-fold more abundant than Mcl-1) restrain part of the Bak in intact lymphoid cells. In addition, we demonstrate that Bcl-2 variants can, depending on their affinity for Bak, substitute for Mcl-1 in protecting cells. Thus, the ability of Bcl-2 to protect cells from activated Bak depends on two important contextual variables, the identity of the Bcl-2 present and the amount expressed.
Assuntos
Apoptose/imunologia , Linfócitos/citologia , Linfócitos/fisiologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Linfócitos B/citologia , Linfócitos B/fisiologia , Proteína 11 Semelhante a Bcl-2 , Regulação para Baixo/imunologia , Humanos , Células Jurkat , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutagênese , Proteína de Sequência 1 de Leucemia de Células Mieloides , Ligação Proteica/fisiologia , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , RNA Interferente Pequeno , Ressonância de Plasmônio de Superfície , Linfócitos T/citologia , Linfócitos T/fisiologia , Transfecção , Proteína Killer-Antagonista Homóloga a bcl-2/genética , Proteína bcl-X/genética , Proteína bcl-X/metabolismoRESUMO
In this issue of Cell Chemical Biology, Harvey et al. (2020) identify 4E14, a sulfhydryl-containing N-acetyltryptophan analog that selectively disrupts binding to the previously undruggable anti-apoptotic BCL2 paralog BFL1, and elucidate a BFL1 conformational change that facilitates 4E14 interaction. These results provide insight that will accelerate development of BFL1 inhibitors.
Assuntos
Apoptose , Dissulfetos , Morte Celular , MetilceluloseRESUMO
The BCL2 family of proteins regulates cellular life and death decisions. Among BCL2 family members, BH3-only proteins have critical roles by neutralizing antiapoptotic family members, as well as directly activating BAX and BAK. Despite widespread occurrence of BH3-only protein upregulation in response to various stresses, this process is rarely quantified. Moreover, it is unclear whether all BH3-only proteins are equipotent at inducing cell death. Here we show that BH3-only proteins increase as much as 15- to 20-fold after various treatments and define a parameter, termed BH3-only tolerance, which measures how many copies of a particular BH3-only protein can be expressed before the majority of cells in a population undergo apoptosis. We not only assess the relative contributions of anti- and proapoptotic BCL2 family members to BH3-only tolerance, but also illustrate how the study of this parameter can be used to understand cellular sensitivity to anticancer drugs and new combinations. These observations provide a new quantitative framework for assessing apoptotic susceptibility under various conditions.