Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(4)2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38396894

RESUMO

The (pro)renin receptor ((P)RR), a versatile protein found in various organs, including the kidney, is implicated in cardiometabolic conditions like diabetes, hypertension, and dyslipidemia, potentially contributing to organ damage. Importantly, changes in (pro)renin/(P)RR system localization during renal injury, a critical information base, remain unexplored. This study investigates the expression and topographic localization of the full length (FL)-(P)RR, its ligands (renin and prorenin), and its target cyclooxygenase-2 and found that they are upregulated in three distinct animal models of renal injury. The protein expression of these targets, initially confined to specific tubular renal cell types in control animals, increases in renal injury models, extending to glomerular cells. (P)RR gene expression correlates with protein changes in a genetic model of focal and segmental glomerulosclerosis. However, in diabetic and high-fat-fed mice, (P)RR mRNA levels contradict FL-(P)RR immunoreactivity. Research on diabetic mice kidneys and human podocytes exposed to diabetic glucose levels suggests that this inconsistency may result from disrupted intracellular (P)RR processing, likely due to increased Munc18-1 interacting protein 3. It follows that changes in FL-(P)RR cellular content mechanisms are specific to renal disease etiology, emphasizing the need for consideration in future studies exploring this receptor's involvement in renal damage of different origins.


Assuntos
Diabetes Mellitus Experimental , Glomerulosclerose Segmentar e Focal , Nefropatias , Síndrome Metabólica , Camundongos , Animais , Humanos , Renina/genética , Renina/metabolismo , Síndrome Metabólica/metabolismo , Diabetes Mellitus Experimental/metabolismo , Roedores/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Rim/metabolismo , Nefropatias/metabolismo , Ligantes
2.
J Pathol ; 245(2): 197-208, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29533466

RESUMO

Diabetes is an established risk factor for pancreatic cancer (PaC), together with obesity, a Western diet, and tobacco smoking. The common mechanistic link might be the accumulation of advanced glycation end-products (AGEs), which characterizes all of the above disease conditions and unhealthy habits. Surprisingly, however, the role of AGEs in PaC has not been examined yet, despite the evidence of a tumour-promoting role of receptor for advanced glycation end-products (RAGE), the receptor for AGEs. Here, we tested the hypothesis that AGEs promote PaC through RAGE activation. To this end, we investigated the effects of the AGE Nϵ -carboxymethyllysine (CML) in human pancreatic ductal adenocarcinoma (PDA) cell lines and in a mouse model of Kras-driven PaC interbred with a bioluminescent model of proliferation. Tumour growth was monitored in vivo by bioluminescence imaging and confirmed by histology. CML promoted PDA cell growth and RAGE expression, in a concentration-dependent and time-dependent manner, and activated downstream tumourigenic signalling pathways. These effects were counteracted by RAGE antagonist peptide (RAP). Exogenous AGE administration to PaC-prone mice induced RAGE upregulation in pancreatic intraepithelial neoplasias (PanINs) and markedly accelerated progression to invasive PaC. At 11 weeks of age (6 weeks of CML treatment), PaC was observed in eight of 11 (72.7%) CML-treated versus one of 11 (9.1%) vehicle-treated [control (Ctr)] mice. RAP delayed PanIN development in Ctr mice but failed to prevent PaC promotion in CML-treated mice, probably because of competition with soluble RAGE for binding to AGEs and/or compensatory upregulation of the RAGE homologue CD166/ activated leukocyte cell adhesion molecule, which also favoured tumour spread. These findings indicate that AGEs modulate the development and progression of PaC through receptor-mediated mechanisms, and might be responsible for the additional risk conferred by diabetes and other conditions characterized by increased AGE accumulation. Finally, our data suggest that an AGE reduction strategy, instead of RAGE inhibition, might be suitable for the risk management and prevention of PaC. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Carcinoma in Situ/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Proliferação de Células , Lisina/análogos & derivados , Neoplasias Pancreáticas/metabolismo , Animais , Antineoplásicos/farmacologia , Carcinoma in Situ/tratamento farmacológico , Carcinoma in Situ/genética , Carcinoma in Situ/patologia , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Complicações do Diabetes/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Genes ras , Humanos , Lisina/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Peptídeos/farmacologia , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Fatores de Risco , Transdução de Sinais , Fatores de Tempo , Carga Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Crit Rev Food Sci Nutr ; 58(10): 1671-1680, 2018 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-28128635

RESUMO

This article is a critical overview of recent contributions on the dietary corrections and the foods that have been claimed to delay or hinder the onset of diabetic nephropathy (DN) and its progression to end-stage renal disease. Innovative dietary and behavioral approaches to the prevention and therapy of DN appear to be the most captivating in consideration of the rather well-established protocols for glucose and blood pressure control in use. In addition to restricted caloric intake to contrast obesity and the metabolic syndrome, adjustments in the patient's macronutrients intake, and in particular some degree of reduction in protein, have been long considered in the prevention of DN progression. More recently, the focus has shifted to the source of proteins and the content of glycotoxins in the diet as well as to the role of specific micronutrients. Few clinical trials have specifically addressed the role of those micronutrients associated with diet proteins that show the most protective effect against DN. Research on clinical outcome and mechanisms of action of such micronutrients appears the most promising in order to develop both effective intervention on nutritional education of the patient and selection of functional foods capable of contrasting the onset and progression of DN.


Assuntos
Diabetes Mellitus Tipo 2/complicações , Nefropatias Diabéticas/dietoterapia , Nefropatias Diabéticas/prevenção & controle , Glicemia , Pressão Sanguínea , Humanos , Síndrome Metabólica , Obesidade
4.
Liver Int ; 37(7): 950-962, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-27943508

RESUMO

By definition, hepatogenous diabetes is directly caused by loss of liver function, implying that it develops after cirrhosis onset. Therefore, it should be distinguished from type 2 diabetes developing before cirrhosis onset, in which specific causes of liver disease play a major role, in addition to traditional risk factors. Currently, although hepatogenous diabetes shows distinct pathophysiological and clinical features, it is not considered as an autonomous entity. Recent evidence suggests that the failing liver exerts an independent "toxic" effect on pancreatic islets resulting in ß-cell dysfunction. Moreover, patients with hepatogenous diabetes usually present with normal fasting glucose and haemoglobin A1c levels and abnormal response to an oral glucose tolerance test, which is therefore required for diagnosis. This article discusses the need to separate hepatogenous diabetes from type 2 diabetes occurring in subjects with chronic liver disease and to identify individuals suffering from this condition for prognostic and therapeutic purposes.


Assuntos
Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus/diagnóstico , Teste de Tolerância a Glucose , Cirrose Hepática/diagnóstico , Hepatopatias/diagnóstico , Biomarcadores/sangue , Glicemia/metabolismo , Diabetes Mellitus/sangue , Diabetes Mellitus/epidemiologia , Diabetes Mellitus/terapia , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/terapia , Diagnóstico Diferencial , Hemoglobinas Glicadas/metabolismo , Humanos , Hipoglicemiantes/uso terapêutico , Resistência à Insulina , Células Secretoras de Insulina/metabolismo , Fígado/metabolismo , Cirrose Hepática/sangue , Cirrose Hepática/epidemiologia , Cirrose Hepática/terapia , Hepatopatias/sangue , Hepatopatias/epidemiologia , Hepatopatias/terapia , Transplante de Fígado , Valor Preditivo dos Testes , Prevalência
5.
Int J Mol Sci ; 18(11)2017 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-29160796

RESUMO

Galectin-3 is expressed in various tissues, including the bone, where it is considered a marker of chondrogenic and osteogenic cell lineages. Galectin-3 protein was found to be increased in the differentiated chondrocytes of the metaphyseal plate cartilage, where it favors chondrocyte survival and cartilage matrix mineralization. It was also shown to be highly expressed in differentiating osteoblasts and osteoclasts, in concomitance with expression of osteogenic markers and Runt-related transcription factor 2 and with the appearance of a mature phenotype. Galectin-3 is expressed also by osteocytes, though its function in these cells has not been fully elucidated. The effects of galectin-3 on bone cells were also investigated in galectin-3 null mice, further supporting its role in all stages of bone biology, from development to remodeling. Galectin-3 was also shown to act as a receptor for advanced glycation endproducts, which have been implicated in age-dependent and diabetes-associated bone fragility. Moreover, its regulatory role in inflammatory bone and joint disorders entitles galectin-3 as a possible therapeutic target. Finally, galectin-3 capacity to commit mesenchymal stem cells to the osteoblastic lineage and to favor transdifferentiation of vascular smooth muscle cells into an osteoblast-like phenotype open a new area of interest in bone and vascular pathologies.


Assuntos
Osso e Ossos/metabolismo , Osso e Ossos/patologia , Diferenciação Celular , Galectina 3/genética , Galectina 3/metabolismo , Osteócitos/citologia , Osteócitos/metabolismo , Calcificação Vascular , Animais , Remodelação Óssea/genética , Diferenciação Celular/genética , Condrócitos/citologia , Condrócitos/metabolismo , Suscetibilidade a Doenças , Homeostase , Humanos , Artropatias/etiologia , Artropatias/metabolismo , Artropatias/patologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Osteíte/etiologia , Osteíte/metabolismo , Osteíte/patologia , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteoclastos/citologia , Osteoclastos/metabolismo , Osteogênese , Calcificação Vascular/genética
6.
Diabetologia ; 58(4): 845-53, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25471794

RESUMO

AIMS/HYPOTHESIS: AGEs are involved in diabetic complications and might be responsible for the phenomenon of 'hyperglycaemic memory'. D-Carnosine-octylester (DCO) has been shown to attenuate AGE formation and vascular and renal injury induced by high-fat diet in Apoe-null mice. This study aimed to verify the protective effect of DCO in atherosclerosis and renal disease induced by experimental diabetes and to discover whether reduction of AGE formation by early vs late DCO treatment provides better macro and microvascular protection. METHODS: Apoe-null mice were rendered diabetic by streptozotocin and were left untreated or were treated with DCO for 20 weeks (DCO-Extended), from week 1 to 11 (DCO-Early) or from week 9 to 19 (DCO-Late). Non-diabetic Apoe-null mice served as controls. Aortic and renal lesions were evaluated by morphometry and protein and gene expression of disease markers were assessed by immunohistochemistry and real-time PCR. RESULTS: DCO-Extended treatment produced a more stable plaque phenotype by markedly attenuating diabetes-induced increases in lesion size, necrotic core area and plaque content of Nε-carboxymethyllysine, levels of apoptotic cells and markers of inflammation and oxidative stress and also reductions in collagen and smooth muscle cells. DCO treatment for 11 weeks afforded partial protection and this was significantly better in DCO-Early mice than in DCO-Late mice. Renal disease was attenuated in DCO-Extended mice and to a lesser extent in those treated for 11 weeks, with no significant difference between DCO-Early mice and DCO-Late mice. CONCLUSIONS/INTERPRETATION: These data show that DCO protects mice from diabetes-induced vascular and renal disease and that protection against atherosclerosis is more effectively achieved by early treatment than by late treatment, thus suggesting that early inhibition of AGE formation attenuates progression of macroangiopathy and favours development of more stable lesions.


Assuntos
Doenças da Aorta/prevenção & controle , Apolipoproteínas E/deficiência , Aterosclerose/prevenção & controle , Carnosina/análogos & derivados , Diabetes Mellitus Experimental/tratamento farmacológico , Angiopatias Diabéticas/prevenção & controle , Nefropatias Diabéticas/prevenção & controle , Produtos Finais de Glicação Avançada/antagonistas & inibidores , Animais , Aorta/efeitos dos fármacos , Aorta/metabolismo , Aorta/patologia , Doenças da Aorta/sangue , Doenças da Aorta/diagnóstico , Doenças da Aorta/genética , Apolipoproteínas E/genética , Aterosclerose/sangue , Aterosclerose/diagnóstico , Aterosclerose/genética , Biomarcadores/sangue , Carnosina/farmacologia , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/diagnóstico , Diabetes Mellitus Experimental/genética , Angiopatias Diabéticas/sangue , Angiopatias Diabéticas/diagnóstico , Angiopatias Diabéticas/genética , Nefropatias Diabéticas/sangue , Nefropatias Diabéticas/diagnóstico , Nefropatias Diabéticas/genética , Progressão da Doença , Feminino , Produtos Finais de Glicação Avançada/sangue , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Camundongos , Camundongos Knockout , Placa Aterosclerótica , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo
7.
Glycobiology ; 25(2): 136-50, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25303959

RESUMO

Galectin-3 has been increasingly recognized as an important modulator of several biological functions, by interacting with several molecules inside and outside the cell, and an emerging player in numerous disease conditions. Galectin-3 exerts various and sometimes contrasting effects according to its location, type of injury or site of damage. Strong evidence indicates that galectin-3 participates in the pathogenesis of diabetic complications via its receptor function for advanced glycation end-products (AGEs) and advanced lipoxidation end-products (ALEs). AGEs/ALEs are produced to an increased extent in target organs of complications, such as kidney and vessels; here, lack of galectin-3 impairs their removal, leading to accelerated damage. In contrast, in the liver, AGE/ALE tissue content and injury are decreased, because lack of galectin-3 results in reduced uptake and tissue accumulation of these by-products. Some of these effects can be explained by changes in the expression of receptor for AGEs (RAGE), associated with galectin-3 deletion and consequent changes in AGE/ALE tissue levels. Furthermore, galectin-3 might exert AGE/ALE- and RAGE-independent effects, favoring resolution of inflammation and modulating fibrogenesis and ectopic osteogenesis. These effects are mediated by intracellular and extracellular galectin-3, the latter via interaction with N-glycans at the cell surface to form lattice structures. Recently, galectin-3 has been implicated in the development of metabolic disorders because it favors glucose homeostasis and prevents the deleterious activation of adaptive and innate immune response to obesogenic/diabetogenic stimuli. In conclusion, galectin-3 is an emerging all-out player in metabolic disorders and their complications that deserves further investigation as the potential target of therapeutic intervention.


Assuntos
Galectina 3/fisiologia , Doenças Metabólicas/metabolismo , Animais , Humanos , Inflamação/metabolismo , Doenças Metabólicas/imunologia , Receptor para Produtos Finais de Glicação Avançada/metabolismo
8.
Diabetes Metab Res Rev ; 30 Suppl 1: 13-23, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24353273

RESUMO

Many studies have highlighted the importance of physical activity (PA) for health, and recent evidence now points to the positive improvements associated with exercise in type 2 diabetes mellitus (T2DM). However, few physicians are willing to prescribe exercise as a therapy for diabetic patients. In addition, there is a lack of information on how to implement exercise therapy especially in long-term exercise regimens. The purpose of this manuscript is to summarize standards of exercise therapy for patients with T2DM, both in terms of prescribing and monitoring, according to the American College of Sports Medicine and the American Diabetes Association guidelines. We present details of the exercise therapies used in long-term studies, describing how the parameters for exercise prescription were applied in clinical practice. These parameters are described in terms of frequency, intensity, duration, mode and rate of progression in long-term therapeutic prescriptions. Individual responses to exercise dose are discussed, and critical issues to be considered in patients with underlying disease and in T2DM patients are highlighted.


Assuntos
Diabetes Mellitus Tipo 2/terapia , Terapia por Exercício , Exercício Físico/fisiologia , Humanos
9.
J Pathol ; 231(3): 342-53, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23843215

RESUMO

Renal disease associated with type 2 diabetes and the metabolic syndrome is characterized by a distinct inflammatory phenotype. The purinergic 2X7 receptor (P2X7 R) and the nucleotide-binding and oligomerization domain-like receptor containing a pyrin domain 3 (NLRP3) inflammasome have been separately shown to play a role in two models of non-metabolic chronic kidney disease. Moreover, the NLRP3 inflammasome has been implicated in chronic low-grade sterile inflammation characterizing metabolic disorders, though the mechanism(s) involved in inflammasome activation under these conditions are still unknown. We investigated the role of P2X7 R (through activation of the NLRP3 inflammasome) in renal inflammation and injury induced by a high-fat diet, an established model of the metabolic syndrome. On a high-fat diet, mice lacking P2X7 R developed attenuated renal functional and structural alterations as well as reduced inflammation, fibrosis, and oxidative/carbonyl stress, as compared with wild-type animals, in the absence of significant differences in metabolic parameters. This was associated with blunted up-regulation of the NLRP3 inflammasome components NLRP3, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), pro-caspase 1, pro-interleukin (IL)-1ß, and pro-IL-18, as well as reduced inflammasome activation, as evidenced by decreased formation of mature caspase 1, whereas mature IL-1ß and IL-18 were not detected. Up-regulated expression of NLRP3 and pro-caspase 1, post-translational processing of pro-caspase-1, and release of IL-18 in response to lipopolysaccharide + 2'(3')-O-(4-benzoylbenzoyl)ATP were attenuated by P2X7 R silencing in cultured mouse podocytes. Protein and mRNA expression of P2X7 R, NLRP3, and ASC were also increased in kidneys from subjects with type 2 diabetes and the metabolic syndrome, showing histologically documented renal disease. These data provide evidence of a major role for the purinergic system, at least in part through activation of the NLRP3 inflammasome, in the process driving 'metabolic' renal inflammation and injury and identify P2X7 R and NLRP3 as novel therapeutic targets.


Assuntos
Proteínas de Transporte/metabolismo , Dieta Hiperlipídica , Inflamassomos/metabolismo , Rim/metabolismo , Síndrome Metabólica/metabolismo , Nefrite/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Animais , Apoptose , Proteínas Reguladoras de Apoptose , Proteínas Adaptadoras de Sinalização CARD , Caspase 1/metabolismo , Células Cultivadas , Proteínas do Citoesqueleto/metabolismo , Nefropatias Diabéticas/imunologia , Nefropatias Diabéticas/metabolismo , Modelos Animais de Doenças , Fibrose , Humanos , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Rim/imunologia , Rim/patologia , Masculino , Síndrome Metabólica/etiologia , Síndrome Metabólica/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR , Nefrite/etiologia , Nefrite/imunologia , Nefrite/patologia , Estresse Oxidativo , Podócitos/imunologia , Podócitos/metabolismo , Carbonilação Proteica , Processamento de Proteína Pós-Traducional , Interferência de RNA , Receptores Purinérgicos P2X7/deficiência , Receptores Purinérgicos P2X7/genética , Transfecção
10.
Clin Chem Lab Med ; 52(10): 1413-23, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24940712

RESUMO

Galectin-3 is a versatile molecule which exerts several and sometimes opposite functions in various pathophysiological processes. Recently, galectin-3 has gained attention as a powerful predictor of heart failure and mortality, thus becoming a useful prognostic marker in clinical practice. Moreover, though not specifically investigated in diabetic cohorts, plasma levels of galectin-3 correlated with the prevalence of diabetes and related metabolic conditions, thus suggesting that pharmacological blockade of this lectin might be successful for treating heart failure especially in subjects suffering from these disorders. Indeed, galectin-3 is considered not only as a marker of heart failure, but also as a mediator of the disease, due to its pro-fibrotic action, though evidence comes mainly from studies in galectin-3 deficient mice. However, these studies have provided contrasting results, with either attenuation or acceleration of organ fibrosis and inflammation, depending on the experimental setting and particularly on the levels of advanced glycation endproducts (AGEs)/advanced lipoxidation endproducts (ALEs), of which galectin-3 is a scavenging receptor. In fact, under conditions of increased AGE/ALE levels, galectin-3 ablation was associated with tissue-specific outcomes, reflecting the AGE/ALE-receptor function of this lectin. Conversely, in experimental models of acute inflammation and fibrosis, galectin-3 deficiency resulted in attenuation of tissue injury. There is a need for prospective studies in diabetic patients specifically investigating the relation of galectin-3 levels with complications and for further animal studies in order to establish the effective role of this lectin in organ damage before considering its pharmacological blockade in the clinical setting.


Assuntos
Diabetes Mellitus/metabolismo , Galectina 3/metabolismo , Animais , Biomarcadores/metabolismo , Complicações do Diabetes/metabolismo , Insuficiência Cardíaca/complicações , Insuficiência Cardíaca/metabolismo , Humanos
11.
Cells ; 13(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38727299

RESUMO

The adipose organ adapts and responds to internal and environmental stimuli by remodeling both its cellular and extracellular components. Under conditions of energy surplus, the subcutaneous white adipose tissue (WAT) is capable of expanding through the enlargement of existing adipocytes (hypertrophy), followed by de novo adipogenesis (hyperplasia), which is impaired in hypertrophic obesity. However, an impaired hyperplastic response may result from various defects in adipogenesis, leading to different WAT features and metabolic consequences, as discussed here by reviewing the results of the studies in animal models with either overexpression or knockdown of the main molecular regulators of the two steps of the adipogenesis process. Moreover, impaired WAT remodeling with aging has been associated with various age-related conditions and reduced lifespan expectancy. Here, we delve into the latest advancements in comprehending the molecular and cellular processes underlying age-related changes in WAT function, their involvement in common aging pathologies, and their potential as therapeutic targets to influence both the health of elderly people and longevity. Overall, this review aims to encourage research on the mechanisms of WAT maladaptation common to conditions of both excessive and insufficient fat tissue. The goal is to devise adipocyte-targeted therapies that are effective against both obesity- and age-related disorders.


Assuntos
Adipogenia , Tecido Adiposo Branco , Envelhecimento , Obesidade , Humanos , Envelhecimento/patologia , Obesidade/patologia , Obesidade/metabolismo , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Branco/patologia , Animais , Adipócitos/metabolismo , Adipócitos/patologia
12.
Front Endocrinol (Lausanne) ; 15: 1393859, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38854689

RESUMO

Background: Current guidelines for nonalcoholic fatty liver disease (NAFLD) recommend high volumes and/or intensities of physical activity (PA), the achievement of which generally requires participation in supervised exercise training programs that however are difficult to implement in routine clinical practice. Conversely, counselling interventions may be more suitable, but result in only modest increases in moderate-to-vigorous-intensity PA (MVPA). This study assessed whether a counseling intervention for increasing PA and decreasing sedentary time (SED-time) is effective in improving NAFLD markers in people with type 2 diabetes. Methods: Three-hundred physically inactive and sedentary patients were randomized 1:1 to receive one-month theoretical and practical counseling once-a-year (intervention group) or standard care (control group) for 3 years. Aspartate aminotransferase (AST), alanine aminotransferase (ALT), and γ-glutamyltranspeptidase (γGT) levels were measured and fatty liver index (FLI), hepatic steatosis index (HSI), and visceral adiposity index (VAI) were calculated. Total PA volume, light-intensity PA (LPA), moderate-to-vigorous-intensity PA (MVPA), and SED-time were objectively measured by an accelerometer. Results: Throughout the 3-year period, NAFLD markers did not change in the control group, whereas ALT, γGT, FLI, and HSI decreased in the intervention group, with significant between-group differences, despite modest MVPA increases, which however were associated with larger decrements in SED-time and reciprocal increments in LPA. Mean changes in NAFLD markers varied according to quartiles of (and correlated with) changes in MVPA (all markers) and SED-time, LPA, and PA volume (ALT, γGT, and HSI). Mean changes in MVPA or PA volume were independent predictors of changes in NAFLD markers. When included in the models, change in cardiorespiratory fitness and lower body muscle strength were independently associated with some NAFLD markers. Conclusion: A behavior change involving all domains of PA lifestyle, even if insufficient to achieve the recommended MVPA target, may provide beneficial effects on NAFLD markers in people with type 2 diabetes.


Assuntos
Alanina Transaminase , Aspartato Aminotransferases , Diabetes Mellitus Tipo 2 , Exercício Físico , Hepatopatia Gordurosa não Alcoólica , Comportamento Sedentário , Humanos , Diabetes Mellitus Tipo 2/terapia , Masculino , Feminino , Pessoa de Meia-Idade , Exercício Físico/fisiologia , Hepatopatia Gordurosa não Alcoólica/terapia , Alanina Transaminase/sangue , Aspartato Aminotransferases/sangue , Aspartato Aminotransferases/metabolismo , Fígado/metabolismo , Biomarcadores , Idoso , gama-Glutamiltransferase/sangue , gama-Glutamiltransferase/metabolismo
13.
Arterioscler Thromb Vasc Biol ; 32(1): 74-81, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22015660

RESUMO

OBJECTIVE: Tissue inhibitor of metalloproteinase 3 (TIMP3) is a stromal protein that inhibits the activity of proteases and receptors. TIMP3 is downregulated in metabolic and inflammatory disorders, such as type 2 diabetes mellitus and atherosclerosis, particularly in regions enriched with monocyte/macrophage cells. To investigate the role of TIMP3 in atherosclerosis, we generated a new mouse model in which Timp3 was overexpressed in the atherosclerotic plaque via a macrophage-specific promoter (MacT3). We elucidated any potential antiatherosclerotic effects of TIMP3, including regulation of monocyte/macrophage recruitment within atherosclerotic plaques, in MacT3 mice crossbred with low-density lipoprotein receptor knockout (LDLR(-/-)) mice. METHODS AND RESULTS: MacT3/LDLR(-/-) mice had an improvement of atherosclerosis and metabolic parameters compared with LDLR(-/-). En face aorta and aortic root examination of MacT3/LDLR(-/-) mice revealed smaller atherosclerotic plaques with features of stability, such as increased collagen content and decreased necrotic core formation. Atherosclerotic plaques in MacT3/LDLR(-/-) mice contained fewer T cells and macrophages. Furthermore, TIMP3 overexpression in macrophages resulted in reduced oxidative stress signals, as evidenced by lower lipid peroxidation, protein carbonylation, and nitration in atheromas. CONCLUSIONS: Our study confirmed that macrophage-specific overexpression of TIMP3 decreases the inflammatory content and the amplitude of atherosclerotic plaques in mice.


Assuntos
Aterosclerose/prevenção & controle , Macrófagos/metabolismo , Receptores de LDL/deficiência , Inibidor Tecidual de Metaloproteinase-3/metabolismo , Animais , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Dieta Aterogênica/efeitos adversos , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Regiões Promotoras Genéticas , Receptores de LDL/genética , Inibidor Tecidual de Metaloproteinase-3/genética , Regulação para Cima
14.
Front Oncol ; 13: 1202093, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37305566

RESUMO

The hypoxia-inducible factor-1α (HIF-1α), a key player in the adaptive regulation of energy metabolism, and the M2 isoform of the glycolytic enzyme pyruvate kinase (PKM2), a critical regulator of glucose consumption, are the main drivers of the metabolic rewiring in cancer cells. The use of glycolysis rather than oxidative phosphorylation, even in the presence of oxygen (i.e., Warburg effect or aerobic glycolysis), is a major metabolic hallmark of cancer. Aerobic glycolysis is also important for the immune system, which is involved in both metabolic disorders development and tumorigenesis. More recently, metabolic changes resembling the Warburg effect have been described in diabetes mellitus (DM). Scientists from different disciplines are looking for ways to interfere with these cellular metabolic rearrangements and reverse the pathological processes underlying their disease of interest. As cancer is overtaking cardiovascular disease as the leading cause of excess death in DM, and biological links between DM and cancer are incompletely understood, cellular glucose metabolism may be a promising field to explore in search of connections between cardiometabolic and cancer diseases. In this mini-review, we present the state-of-the-art on the role of the Warburg effect, HIF-1α, and PKM2 in cancer, inflammation, and DM to encourage multidisciplinary research to advance fundamental understanding in biology and pathways implicated in the link between DM and cancer.

15.
Front Endocrinol (Lausanne) ; 14: 1297847, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38313841

RESUMO

Introduction: Type 1 diabetes mellitus (T1DM) development involves a complex interplay of genetic, environmental, and immunological factors. By modulating the activity of proteases and receptors, the protein tissue inhibitor of metalloproteinase 3 (TIMP3) plays a role in limiting the expression and function of pro-inflammatory cytokines, which have been implicated in the advancement of T1DM. This study was aimed at examining the effect of TIMP3 overexpression in myeloid cells on the development of T1DM. Methods and results: Twelve weeks after multiple low doses of streptozotocin (MLDS) treatment, diabetic mice overexpressing TIMP3 specifically in myeloid cells under the CD68 promoter (MacT3 mice) showed improved insulin secretion, islet morphology and vascularization, antioxidant defense system, and regulatory factors of mitochondrial biosynthesis and function. To get mechanistic insights into the origin of this protection, the severity of insulitis and inflammatory parameters were evaluated in pancreatic tissues 11 days after MLSD treatment, showing significantly reduced insulitis and levels of the pro-inflammatory cytokine tumor necrosis factor-α, interleukin -1ß, and interferon -γ in MacT3 mice. Discussion: The results indicate that TIMP3 is involved in maintaining islet architecture and functions, at least in part, through modulation of pro-inflammatory cytokine production associated with insulitis and may represent a novel therapeutic strategy for T1DM.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Inibidor Tecidual de Metaloproteinase-3 , Animais , Camundongos , Linhagem da Célula , Citocinas/metabolismo , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Interferon gama , Hormônios Pancreáticos , Estreptozocina , Inibidor Tecidual de Metaloproteinase-3/genética
16.
Nutrients ; 14(5)2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-35268036

RESUMO

Carbonyl stress is a condition characterized by an increase in the steady-state levels of reactive carbonyl species (RCS) that leads to accumulation of their irreversible covalent adducts with biological molecules. RCS are generated by the oxidative cleavage and cellular metabolism of lipids and sugars. In addition to causing damage directly, the RCS adducts, advanced glycation end-products (AGEs) and advanced lipoxidation end-products (ALEs), cause additional harm by eliciting chronic inflammation through receptor-mediated mechanisms. Hyperglycemia- and dyslipidemia-induced carbonyl stress plays a role in diabetic cardiovascular complications and diabetes-related cancer risk. Moreover, the increased dietary exposure to AGEs/ALEs could mediate the impact of the modern, highly processed diet on cardiometabolic and cancer risk. Finally, the transient carbonyl stress resulting from supraphysiological postprandial spikes in blood glucose and lipid levels may play a role in acute proinflammatory and proatherogenic changes occurring after a calorie dense meal. These findings underline the potential importance of carbonyl stress as a mediator of the cardiometabolic and cancer risk linked to today's unhealthy diet. In this review, current knowledge in this field is discussed along with future research courses to offer new insights and open new avenues for therapeutic interventions to prevent diet-associated cardiometabolic disorders and cancer.


Assuntos
Doenças Cardiovasculares , Dieta , Doenças Metabólicas , Neoplasias , Estresse Oxidativo , Carbono/metabolismo , Fatores de Risco Cardiometabólico , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/metabolismo , Dieta/efeitos adversos , Alimentos/efeitos adversos , Produtos Finais de Glicação Avançada/efeitos adversos , Produtos Finais de Glicação Avançada/metabolismo , Humanos , Inflamação/etiologia , Inflamação/metabolismo , Metabolismo dos Lipídeos , Doenças Metabólicas/etiologia , Doenças Metabólicas/metabolismo , Neoplasias/etiologia , Neoplasias/metabolismo , Risco , Mudança Social
17.
Antioxidants (Basel) ; 11(11)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36358555

RESUMO

Oxidative stress and hypoxia-inducible factors (HIFs) have been implicated in the pathogenesis of diabetic cardiovascular and renal diseases. Reactive oxygen species (ROS) mediate physiological and pathophysiological processes, being involved in the modulation of cell signaling, differentiation, and survival, but also in cyto- and genotoxic damage. As master regulators of glycolytic metabolism and oxygen homeostasis, HIFs have been largely studied for their role in cell survival in hypoxic conditions. However, in addition to hypoxia, other stimuli can regulate HIFs stability and transcriptional activity, even in normoxic conditions. Among these, a regulatory role of ROS and their byproducts on HIFs, particularly the HIF-1α isoform, has received growing attention in recent years. On the other hand, HIF-1α and HIF-2α exert mutually antagonistic effects on oxidative damage. In diabetes, redox-mediated HIF-1α deregulation contributes to the onset and progression of cardiovascular and renal complications, and recent findings suggest that deranged HIF signaling induced by hyperglycemia and other cellular stressors associated with metabolic disorders may cause mitochondrial dysfunction, oxidative stress, and inflammation. Understanding the mechanisms of mutual regulation between HIFs and redox factors and the specific contribution of the two main isoforms of HIF-α is fundamental to identify new therapeutic targets for vascular complications of diabetes.

18.
J Hepatol ; 54(5): 975-83, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21145823

RESUMO

BACKGROUND & AIMS: Excess fatty acid oxidation and generation of reactive carbonyls with formation of advanced lipoxidation endproducts (ALEs) is involved in nonalcoholic steatohepatitis (NASH) by triggering inflammation, hepatocyte injury, and fibrosis. This study aimed at verifying the hypothesis that ablation of the ALE-receptor galectin-3 prevents experimental NASH by reducing receptor-mediated ALE clearance and downstream events. METHODS: Galectin-3-deficient (Lgals3(-/-)) and wild type (Lgals3(+/+)) mice received an atherogenic diet or standard chow for 8 months. Liver tissue was analyzed for morphology, inflammation, cell and matrix turnover, lipid metabolism, ALEs, and ALE-receptors. RESULTS: Steatosis was significantly less pronounced in Lgals3(-/-) than Lgals3(+/+) animals on atherogenic diet. NASH, invariably detected in Lgals3(+/+) mice, was observed, to a lower extent, only in 3/8 Lgals3(-/-) mice, showing less inflammatory, degenerative, and fibrotic phenomena than Lgals3(+/+) mice. This was associated with higher circulating ALE levels and lower tissue ALE accumulation and expression of other ALE-receptors. Up-regulation of hepatic fatty acid synthesis and oxidation, inflammatory cell infiltration, pro-inflammatory cytokines, endoplasmic reticulum stress, hepatocyte apoptosis, myofibroblast transdifferentiation, and impaired Akt phosphorylation were also significantly attenuated in Lgals3(-/-) animals. Galectin-3 silencing in liver endothelial cells resulted in reduced N(ε)-carboxymethyllysine-modified albumin uptake and ALE-receptor expression. CONCLUSIONS: Galectin-3 ablation protects from diet-induced NASH by decreasing hepatic ALE accumulation, with attenuation of inflammation, hepatocyte injury, and fibrosis. It also reduced up-regulation of lipid synthesis and oxidation causing less fat deposition, oxidative stress, and possibly insulin resistance. These data suggest that galectin-3 is a major receptor involved in ALE uptake by the liver.


Assuntos
Fígado Gorduroso , Galectina 3/genética , Galectina 3/metabolismo , Animais , Apoptose/fisiologia , Antígenos CD36/genética , Antígenos CD36/metabolismo , Dieta Aterogênica , Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Feminino , Fibroblastos/patologia , Inativação Gênica , Leucócitos/metabolismo , Leucócitos/patologia , Metabolismo dos Lipídeos/fisiologia , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica , Estresse Oxidativo/fisiologia , Receptor para Produtos Finais de Glicação Avançada , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Índice de Gravidade de Doença
19.
Hepatology ; 51(1): 103-10, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19877183

RESUMO

UNLABELLED: Tumor necrosis factor alpha-converting enzyme (TACE, also known as ADAM17) was recently involved in the pathogenesis of insulin resistance. We observed that TACE activity was significantly higher in livers of mice fed a high-fat diet (HFD) for 1 month, and this activity was increased in liver > white adipose tissue > muscle after 5 months compared with chow control. In mouse hepatocytes, C(2)C(12) myocytes, and 3T3F442A adipocytes, TACE activity was triggered by palmitic acid, lipolysaccharide, high glucose, and high insulin. TACE overexpression significantly impaired insulin-dependent phosphorylation of AKT, GSK3, and FoxO1 in mouse hepatocytes. To test the role of TACE activation in vivo, we used tissue inhibitor of metalloproteinase 3 (Timp3) null mice, because Timp3 is the specific inhibitor of TACE and Timp3(-/-) mice have higher TACE activity compared with wild-type (WT) mice. Timp3(-/-) mice fed a HFD for 5 months are glucose-intolerant and insulin-resistant; they showed macrovesicular steatosis and ballooning degeneration compared with WT mice, which presented only microvesicular steatosis. Shotgun proteomics analysis revealed that Timp3(-/-) liver showed a significant differential expression of 38 proteins, including lower levels of adenosine kinase, methionine adenosysltransferase I/III, and glycine N-methyltransferase and higher levels of liver fatty acid-binding protein 1. These changes in protein levels were also observed in hepatocytes infected with adenovirus encoding TACE. All these proteins play a role in fatty acid uptake, triglyceride synthesis, and methionine metabolism, providing a molecular explanation for the increased hepatosteatosis observed in Timp3(-/-) compared with WT mice. CONCLUSION: We have identified novel mechanisms, governed by the TACE-Timp3 interaction, involved in the determination of insulin resistance and liver steatosis during overfeeding in mice.


Assuntos
Proteínas ADAM/metabolismo , Fígado Gorduroso/induzido quimicamente , Resistência à Insulina/fisiologia , Inibidor Tecidual de Metaloproteinase-3/fisiologia , Proteína ADAM17 , Animais , Gorduras na Dieta/administração & dosagem , Camundongos , Proteômica , Inibidor Tecidual de Metaloproteinase-3/deficiência
20.
Biomedicines ; 9(9)2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-34572324

RESUMO

Intracellular metabolism of excess glucose induces mitochondrial dysfunction and diversion of glycolytic intermediates into branch pathways, leading to cell injury and inflammation. Hyperglycemia-driven overproduction of mitochondrial superoxide was thought to be the initiator of these biochemical changes, but accumulating evidence indicates that mitochondrial superoxide generation is dispensable for diabetic complications development. Here we tested the hypothesis that hypoxia inducible factor (HIF)-1α and related bioenergetic changes (Warburg effect) play an initiating role in glucotoxicity. By using human endothelial cells and macrophages, we demonstrate that high glucose (HG) induces HIF-1α activity and a switch from oxidative metabolism to glycolysis and its principal branches. HIF1-α silencing, the carbonyl-trapping and anti-glycating agent ʟ-carnosine, and the glyoxalase-1 inducer trans-resveratrol reversed HG-induced bioenergetics/biochemical changes and endothelial-monocyte cell inflammation, pointing to methylglyoxal (MGO) as the non-hypoxic stimulus for HIF1-α induction. Consistently, MGO mimicked the effects of HG on HIF-1α induction and was able to induce a switch from oxidative metabolism to glycolysis. Mechanistically, methylglyoxal causes HIF1-α stabilization by inhibiting prolyl 4-hydroxylase domain 2 enzyme activity through post-translational glycation. These findings introduce a paradigm shift in the pathogenesis and prevention of diabetic complications by identifying HIF-1α as essential mediator of glucotoxicity, targetable with carbonyl-trapping agents and glyoxalase-1 inducers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA