Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Phys ; 157(6): 064302, 2022 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-35963718

RESUMO

We probe resonances (transient anions) in nitrobenzene with the focus on the electron emission from these. Experimentally, we populate resonances in two ways: either by the impact of free electrons on the neutral molecule or by the photoexcitation of the bound molecular anion. These two excitation means lead to transient anions in different initial geometries. In both cases, the anions decay by electron emission and we record the electron spectra. Several types of emission are recognized, differing by the way in which the resulting molecule is vibrationally excited. In the excitation of specific vibrational modes, distinctly different modes are visible in electron collision and photodetachment experiments. The unspecific vibrational excitation, which leads to the emission of thermal electrons following the internal vibrational redistribution, shows similar features in both experiments. A model for the thermal emission based on a detailed balance principle agrees with the experimental findings very well. Finally, a similar behavior in the two experiments is also observed for a third type of electron emission, the vibrational autodetachment, which yields electrons with constant final energies over a broad range of excitation energies. The entrance channels for the vibrational autodetachment are examined in detail, and they point to a new mechanism involving a reverse valence to non-valence internal conversion.

2.
Phys Rev Lett ; 124(20): 203401, 2020 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-32501066

RESUMO

Electronic resonances commonly decay via internal conversion to vibrationally hot anions and subsequent statistical electron emission. We observed vibrational structure in such an emission from the nitrobenzene anion, in both the 2D electron energy loss and 2D photoelectron spectroscopy of the neutral and anion, respectively. The emission peaks could be correlated with calculated nonadiabatic coupling elements for vibrational modes to the electronic continuum from a nonvalence dipole-bound state. This autodetachment mechanism via a dipole-bound state is likely to be a common feature in both electron and photoelectron spectroscopies.

3.
Phys Chem Chem Phys ; 22(10): 6013-6014, 2020 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-32124887

RESUMO

Correction for 'Enhancement of electron accepting ability of para-benzoquinone by a single water molecule' by Golda Mensa-Bonsu et al., Phys. Chem. Chem. Phys., 2019, 21, 21689-21692.

4.
J Chem Phys ; 152(17): 174303, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32384861

RESUMO

Electron-molecule resonances of anthracene were probed by 2D photoelectron imaging of the corresponding radical anion up to 3.7 eV in the continuum. A number of resonances were observed in both the photoelectron spectra and angular distributions, and most resonances showed clear autodetachment dynamics. The resonances were assigned using density functional theory calculations and are consistent with the available literature. Competition between direct and autodetachment, as well as signatures of internal conversion between resonances, was observed for some resonances. For the 12B2g resonance, a small fraction of population recovers the ground electronic state as evidenced by thermionic emission. Recovery of the ground electronic state offers a route of producing anions in an electron-molecule reaction; however, the energy at which this occurs suggests that anthracene anions cannot be formed in the interstellar medium by electron capture through this resonance.

5.
Phys Chem Chem Phys ; 21(39): 21689-21692, 2019 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-31552961

RESUMO

Electron acceptors built upon the para-benzoquinone (pBQ) electrophore are ubiquitous in nature. Here, we present a frequency-resolved photoelectron spectroscopic study of the cold pBQ radical anion, pBQ-, solvated by a single water molecule, as commonly encountered in nature. Our results show that the electron accepting ability is enhanced by the single water molecule and by elevated temperatures.

6.
Phys Chem Chem Phys ; 21(26): 13977-13985, 2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-30534728

RESUMO

Photodetachment and 2D photoelectron spectra of the mass-selected I-·CF3I complex are presented together with electronic structure calculations. Calculations show that the I- is located at the iodine side of CF3I. Vertical and adiabatic detachment energies were measured at 4.03 and approximately 3.8 eV, respectively. The photoelectron spectra and molecular orbitals show a significant covalent bonding character in the cluster. The presence of electronic excited states is observed. Below threshold, iodide is generated which can be assigned to the photoexcitation of degenerate charge-transfer bands from the off-axis p-orbitals localised on iodide. Near the onset of two spin-orbit thresholds, bright excited states are seen in the experiment and calculations. Excitation of these leads to the formation of slow electrons. The spectroscopy of I-·CF3I is compared to the well-studied I-·CH3I cluster, a pre-reaction complex in the text-book I- + CH3I SN2 reaction. Despite the reversed stereodynamics (i.e. inversion of the CX3 between X = H and F) of the SN2 reaction, striking similarities are seen. Both complexes possess charge transfer excited states near their respective vertical detachment energies and exhibit vibrational structure in their photoelectron spectra. The strong binding is consistent with observations in crossed molecular beam studies and molecular dynamics simulations that suggest that iodine as a leaving group in an SN2 reaction affects the reaction dynamics.

7.
J Chem Phys ; 151(20): 204302, 2019 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-31779316

RESUMO

The photoelectron spectra of para-benzoquinone radical cluster anions, (pBQ)n - (n = 2-4), taken at hv = 4.00 eV are presented and compared with the photoelectron spectrum of the monomer (n = 1). For all clusters, a direct detachment peak can be identified, and the incremental increase in the vertical detachment energy of ∼0.4 eV n-1 predominantly reflects the increase in cohesion energy as the cluster size increases. For all clusters, excitation also leads to low energy electrons that are produced by thermionic emission from ground electronic state anionic species, indicating that resonances are excited at this photon energy. For n = 3 and 4, photoelectron features at lower binding energy are observed which can be assigned to photodetachment from pBQ- for n = 3 and both pBQ- and (pBQ)2 - for n = 4. These observations indicate that the cluster dissociates on the time scale of the laser pulse (∼5 ns). The present results are discussed in the context of related quinone cluster anions.

8.
J Chem Phys ; 148(8): 084304, 2018 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-29495768

RESUMO

Laser photodissociation spectroscopy of the I-·thymine (I-·T) and I-·cytosine (I-·C) nucleobase clusters has been conducted for the first time across the regions above the electron detachment thresholds to explore the excited states and photodissociation channels. Although photodepletion is strong, only weak ionic photofragment signals are observed, indicating that the clusters decay predominantly by electron detachment. The photodepletion spectra of the I-·T and I-·C clusters display a prominent dipole-bound excited state (I) in the vicinity of the vertical detachment energy (∼4.0 eV). Like the previously studied I-·uracil (I-·U) cluster [W. L. Li et al., J. Chem. Phys. 145, 044319 (2016)], the I-·T cluster also displays a second excited state (II) centred at 4.8 eV, which we similarly assign to a π-π* nucleobase-localized transition. However, no distinct higher-energy absorption bands are evident in the spectra of the I-·C. Time-dependent density functional theory (TDDFT) calculations are presented, showing that while each of the I-·T and I-·U clusters displays a single dominant π-π* nucleobase-localized transition, the corresponding π-π* nucleobase transitions for I-·C are split across three separate weaker electronic excitations. I- and deprotonated nucleobase anion photofragments are observed upon photoexcitation of both I-·U and I-·T, with the action spectra showing bands (at 4.0 and 4.8 eV) for both the I- and deprotonated nucleobase anion production. The photofragmentation behaviour of the I-·C cluster is distinctive as its I- photofragment displays a relatively flat profile above the expected vertical detachment energy. We discuss the observed photofragmentation profiles of the I-·pyrimidine clusters, in the context of the previous time-resolved measurements, and conclude that the observed photoexcitations are primarily consistent with intracluster electron transfer dominating in the near-threshold region, while nucleobase-centred excitations dominate close to 4.8 eV. TDDFT calculations suggest that charge-transfer transitions [Iodide n (5p6) → Uracil σ*] may contribute to the cluster absorption profile across the scanned spectral region, and the possible role of these states is also discussed.


Assuntos
Citosina/química , Elétrons , Iodetos/química , Pirimidinas/química , Timina/química , Transporte de Elétrons , Íons/química , Processos Fotoquímicos , Teoria Quântica
9.
Nat Chem ; 13(8): 737-742, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33941903

RESUMO

The reaction of low-energy electrons with neutral molecules to form anions plays an important role in chemistry, being involved in, for example, various biological and astrochemical processes. However, key aspects of electron-molecule interactions, such as the effect of incremental solvation on the initially excited electronic resonances, remain poorly understood. Here two-dimensional photoelectron spectroscopy of anionic anthracene and nitrogen-substituted derivatives-solvated by up to five water molecules-reveals that for an incoming electron, resonances red-shift with increasing hydration; but for the anion, the excitation energies of the resonances remain essentially the same. These complementary points of view show that the observed onset of enhanced anion formation for a specific cluster size is mediated by a bound excited state of the anion. Our findings suggest that polycyclic aromatic hydrocarbons may be more efficient at electron capture than previously predicted with important consequences for the ionization fraction in dense molecular clouds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA