Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
MMWR Morb Mortal Wkly Rep ; 71(22): 734-742, 2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-35653347

RESUMO

Certain laboratorians and health care personnel can be exposed to orthopoxviruses through occupational activities. Because orthopoxvirus infections resulting from occupational exposures can be serious, the Advisory Committee on Immunization Practices (ACIP) has continued to recommend preexposure vaccination for these persons since 1980 (1), when smallpox was eradicated (2). In 2015, ACIP made recommendations for the use of ACAM2000, the only orthopoxvirus vaccine available in the United States at that time (3). During 2020-2021, ACIP considered evidence for use of JYNNEOS, a replication-deficient Vaccinia virus vaccine, as an alternative to ACAM2000. In November 2021, ACIP unanimously voted in favor of JYNNEOS as an alternative to ACAM2000 for primary vaccination and booster doses. With these recommendations for use of JYNNEOS, two vaccines (ACAM2000 and JYNNEOS) are now available and recommended for preexposure prophylaxis against orthopoxvirus infection among persons at risk for such exposures.


Assuntos
Mpox , Exposição Ocupacional , Orthopoxvirus , Varíola , Vacinas , Comitês Consultivos , Humanos , Imunização , Varíola/prevenção & controle , Estados Unidos/epidemiologia , Vacinação , Vaccinia virus
2.
Vaccines (Basel) ; 10(6)2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35746571

RESUMO

Sudan ebolavirus (SUDV) is one of four members of the Ebolavirus genus known to cause Ebola Virus Disease (EVD) in humans, which is characterized by hemorrhagic fever and a high case fatality rate. While licensed therapeutics and vaccines are available in limited number to treat infections of Zaire ebolavirus, there are currently no effective licensed vaccines or therapeutics for SUDV. A well-characterized animal model of this disease is needed for the further development and testing of vaccines and therapeutics. In this study, twelve cynomolgus macaques (Macaca fascicularis) were challenged intramuscularly with 1000 PFUs of SUDV and were followed under continuous telemetric surveillance. Clinical observations, body weights, temperature, viremia, hematology, clinical chemistry, and coagulation were analyzed at timepoints throughout the study. Death from SUDV disease occurred between five and ten days after challenge at the point that each animal met the criteria for euthanasia. All animals were observed to exhibit clinical signs and lesions similar to those observed in human cases which included: viremia, fever, dehydration, reduced physical activity, macular skin rash, systemic inflammation, coagulopathy, lymphoid depletion, renal tubular necrosis, hepatocellular degeneration and necrosis. The results from this study will facilitate the future preclinical development and evaluation of vaccines and therapeutics for SUDV.

3.
Vaccines (Basel) ; 9(9)2021 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-34579282

RESUMO

The continuing outbreaks of ebola virus disease highlight the ongoing threat posed by filoviruses. Fortunately, licensed vaccines and therapeutics are now available for Zaire ebolavirus. However, effective medical countermeasures, such as vaccines for other filoviruses such as Sudan ebolavirus and the Marburg virus, are presently in early stages of development and, in the absence of a large outbreak, would require regulatory approval via the U.S. Food and Drug Administration (FDA) Animal Rule. The selection of an appropriate animal model and virus challenge isolates for nonclinical studies are critical aspects of the development program. Here, we have focused on the recommendation of challenge isolates for Sudan ebolavirus and Marburg virus. Based on analyses led by the Filovirus Animal and Nonclinical Group (FANG) and considerations for strain selection under the FDA Guidance for the Animal Rule, we propose prototype virus isolates for use in nonclinical challenge studies.

4.
J Gen Virol ; 90(Pt 11): 2604-2608, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19587131

RESUMO

Vaccination with Dryvax elicits a broad humoral response against many viral proteins. Human vaccinia immune globulin was used to screen the secreted proteins from cells infected with Dryvax or the candidate smallpox vaccine LC16m8 to determine whether the protective humoral response included antibodies against secreted viral proteins. Many proteins were detected, with the primary band corresponding to a band of 28 or 30 kDa in cells infected with Dryvax or LC16m8, respectively. This was identified as the vaccinia virus complement protein (VCP), which migrated more slowly in LC16m8-infected cells due to post-translational glycosylation. Vaccinia virus deleted in VCP, vVCPko, protected mice from a lethal intranasal challenge of vaccinia Western Reserve strain. Mice vaccinated with purified VCP demonstrated a strong humoral response, but were not protected against a moderate lethal challenge of vaccinia virus, suggesting that the humoral response against VCP is not critical for protection.


Assuntos
Anticorpos Antivirais/imunologia , Vacina Antivariólica/imunologia , Varíola/prevenção & controle , Proteínas Virais/imunologia , Animais , Deleção de Genes , Humanos , Camundongos , Análise de Sobrevida , Vaccinia virus/genética , Vaccinia virus/imunologia , Proteínas Virais/genética
5.
J Infect Dis ; 186(8): 1065-73, 2002 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-12355355

RESUMO

Several reports have indicated that prime-boost strategies of vaccination can enhance the level of specific immunity induced by nucleic acid vaccines. The present report describes such a strategy with herpes simplex virus (HSV)-2 glycoprotein D (gD), using combinations of plasmid vector that expresses gD (pgD2) and a recombinant modified vaccinia virus Ankara vector that expresses gD (MVA-gD2). The IgG antibody response to gD and the HSV-2 neutralizing antibody response were greatest when the MVA-gD2 vector was used as the priming immunization and then was boosted with either pgD2 or MVA-gD2. Determination of the isotype profile of MVA-gD2-primed mice revealed a much broader distribution of isotypes than that seen after DNA vaccination. In addition, antigen-stimulated spleen cells from mice primed with MVA-gD2 and boosted with either MVA-gD2 or pgD2 produced higher levels of interleukin-2 and interferon-gamma than did those from pgD2-primed mice, indicating that a prime-boost immunization strategy that uses the MVA and plasmid DNA vector dramatically enhances and diversifies the humoral and cellular immune response to HSV-2 gD.


Assuntos
Especificidade de Anticorpos , Citocinas/imunologia , Herpes Simples/imunologia , Vacinação , Vacinas de DNA/imunologia , Vaccinia virus/genética , Proteínas do Envelope Viral/imunologia , Animais , Anticorpos Antivirais/biossíntese , Anticorpos Antivirais/imunologia , Western Blotting , Citocinas/biossíntese , Modelos Animais de Doenças , Regulação Viral da Expressão Gênica , Herpes Simples/prevenção & controle , Herpesvirus Humano 2/genética , Herpesvirus Humano 2/imunologia , Imunoglobulina G/biossíntese , Imunoglobulina G/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Plasmídeos/genética , Vacinas de DNA/genética , Proteínas do Envelope Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA