Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Philos Trans A Math Phys Eng Sci ; 381(2249): 20220162, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37150196

RESUMO

The Southern Ocean upper-layer freshwater balance exerts a global climatic influence by modulating density stratification and biological productivity, and hence the exchange of heat and carbon between the atmosphere and the ocean interior. It is thus important to understand and quantify the time-varying freshwater inputs, which is challenging from measurements of salinity alone. Here we use seawater oxygen isotopes from samples collected between 2016 and 2021 along a transect spanning the Scotia and northern Weddell Seas to separate the freshwater contributions from sea ice and meteoric sources. The unprecedented retreat of sea ice in 2016 is evidenced as a strong increase in sea ice melt across the northern Weddell Sea, with surface values increasing approximately two percentage points between 2016 and 2018 and column inventories increasing approximately 1 to 2 m. Surface meteoric water concentrations exceeded 4% in early 2021 close to South Georgia due to meltwater from the A68 megaberg; smaller icebergs may influence meteoric water at other times also. Both these inputs highlight the importance of a changing cryosphere for upper-ocean freshening; potential future sea ice retreats and increases in iceberg calving would enhance the impacts of these freshwater sources on the ocean and climate. This article is part of a discussion meeting issue 'Heat and carbon uptake in the Southern Ocean: the state of the art and future priorities'.

2.
Philos Trans A Math Phys Eng Sci ; 381(2249): 20220070, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37150199

RESUMO

The 5-year Ocean Regulation of Climate by Heat and Carbon Sequestration and Transports (ORCHESTRA) programme and its 1-year extension ENCORE (ENCORE is the National Capability ORCHESTRA Extension) was an approximately 11-million-pound programme involving seven UK research centres that finished in March 2022. The project sought to radically improve our ability to measure, understand and predict the exchange, storage and export of heat and carbon by the Southern Ocean. It achieved this through a series of milestone observational campaigns in combination with model development and analysis. Twelve cruises in the Weddell Sea and South Atlantic were undertaken, along with mooring, glider and profiler deployments and aircraft missions, all contributing to measurements of internal ocean and air-sea heat and carbon fluxes. Numerous forward and adjoint numerical experiments were developed and supported by the analysis of coupled climate models. The programme has resulted in over 100 peer-reviewed publications to date as well as significant impacts on climate assessments and policy and science coordination groups. Here, we summarize the research highlights of the programme and assess the progress achieved by ORCHESTRA/ENCORE and the questions it raises for the future. This article is part of a discussion meeting issue 'Heat and carbon uptake in the Southern Ocean: the state of the art and future priorities'.

3.
Proc Natl Acad Sci U S A ; 116(27): 13233-13238, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31213535

RESUMO

The overturning circulation of the global ocean is critically shaped by deep-ocean mixing, which transforms cold waters sinking at high latitudes into warmer, shallower waters. The effectiveness of mixing in driving this transformation is jointly set by two factors: the intensity of turbulence near topography and the rate at which well-mixed boundary waters are exchanged with the stratified ocean interior. Here, we use innovative observations of a major branch of the overturning circulation-an abyssal boundary current in the Southern Ocean-to identify a previously undocumented mixing mechanism, by which deep-ocean waters are efficiently laundered through intensified near-boundary turbulence and boundary-interior exchange. The linchpin of the mechanism is the generation of submesoscale dynamical instabilities by the flow of deep-ocean waters along a steep topographic boundary. As the conditions conducive to this mode of mixing are common to many abyssal boundary currents, our findings highlight an imperative for its representation in models of oceanic overturning.

4.
Nature ; 501(7467): 408-11, 2013 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-24048070

RESUMO

Diapycnal mixing (across density surfaces) is an important process in the global ocean overturning circulation. Mixing in the interior of most of the ocean, however, is thought to have a magnitude just one-tenth of that required to close the global circulation by the downward mixing of less dense waters. Some of this deficit is made up by intense near-bottom mixing occurring in restricted 'hot-spots' associated with rough ocean-floor topography, but it is not clear whether the waters at mid-depth, 1,000 to 3,000 metres, are returned to the surface by cross-density mixing or by along-density flows. Here we show that diapycnal mixing of mid-depth (∼1,500 metres) waters undergoes a sustained 20-fold increase as the Antarctic Circumpolar Current flows through the Drake Passage, between the southern tip of South America and Antarctica. Our results are based on an open-ocean tracer release of trifluoromethyl sulphur pentafluoride. We ascribe the increased mixing to turbulence generated by the deep-reaching Antarctic Circumpolar Current as it flows over rough bottom topography in the Drake Passage. Scaled to the entire circumpolar current, the mixing we observe is compatible with there being a southern component to the global overturning in which about 20 sverdrups (1 Sv = 10(6) m(3) s(-1)) upwell in the Southern Ocean, with cross-density mixing contributing a significant fraction (20 to 30 per cent) of this total, and the remainder upwelling along constant-density surfaces. The great majority of the diapycnal flux is the result of interaction with restricted regions of rough ocean-floor topography.


Assuntos
Água do Mar/análise , Movimentos da Água , Regiões Antárticas , Difusão , Hidrocarbonetos Fluorados/análise , Oceano Pacífico , Água do Mar/química , América do Sul , Compostos de Enxofre/análise , Fatores de Tempo
5.
Philos Trans A Math Phys Eng Sci ; 376(2122)2018 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-29760114

RESUMO

Palmer Deep (PD) is one of several regional hotspots of biological productivity along the inner shelf of the West Antarctic Peninsula. The proximity of hotspots to shelf-crossing deep troughs has led to the 'canyon hypothesis', which proposes that circumpolar deep water flowing shoreward along the canyons is upwelled on the inner shelf, carrying nutrients including iron (Fe) to surface waters, maintaining phytoplankton blooms. We present here full-depth profiles of dissolved and particulate Fe and manganese (Mn) from eight stations around PD, sampled in January and early February of 2015 and 2016, allowing the first detailed evaluation of Fe sources to the area's euphotic zone. We show that upwelling of deep water does not control Fe flux to the surface; instead, shallow sediment-sourced Fe inputs are transported horizontally from surrounding coastlines, creating strong vertical gradients of dissolved Fe within the upper 100 m that supply this limiting nutrient to the local ecosystem. The supply of bioavailable Fe is, therefore, not significantly related to the canyon transport of deep water. Near shore time-series samples reveal that local glacial meltwater appears to be an important Mn source but, surprisingly, is not a large direct Fe input to this biological hotspot.This article is part of the theme issue 'The marine system of the West Antarctic Peninsula: status and strategy for progress in a region of rapid change'.

6.
Philos Trans A Math Phys Eng Sci ; 376(2122)2018 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-29760108

RESUMO

Glacial meltwater discharge from Antarctica is a key influence on the marine environment, impacting ocean circulation, sea level and productivity of the pelagic and benthic ecosystems. The responses elicited depend strongly on the characteristics of the meltwater releases, including timing, spatial structure and geochemical composition. Here we use isotopic tracers to reveal the time-varying pattern of meltwater during a discharge event from the Fourcade Glacier into Potter Cove, northern Antarctic Peninsula. The discharge is strongly dependent on local air temperature, and accumulates into an extremely thin, buoyant layer at the surface. This layer showed evidence of elevated turbidity, and responded rapidly to changes in atmospherically driven circulation to generate a strongly pulsed outflow from the cove to the broader ocean. These characteristics contrast with those further south along the Peninsula, where strong glacial frontal ablation is driven oceanographically by intrusions of warm deep waters from offshore. The Fourcade Glacier switched very recently to being land-terminating; if retreat rates elsewhere along the Peninsula remain high and glacier termini progress strongly landward, the structure and impact of the freshwater discharges are likely to increasingly resemble the patterns elucidated here.This article is part of the theme issue 'The marine system of the West Antarctic Peninsula: status and strategy for progress in a region of rapid change'.

7.
Philos Trans A Math Phys Eng Sci ; 376(2122)2018 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-29760112

RESUMO

The West Antarctic Peninsula shelf is a region of high seasonal primary production which supports a large and productive food web, where macronutrients and inorganic carbon are sourced primarily from intrusions of warm saline Circumpolar Deep Water. We examined the cross-shelf modification of this water mass during mid-summer 2015 to understand the supply of nutrients and carbon to the productive surface ocean, and their subsequent uptake and cycling. We show that nitrate, phosphate, silicic acid and inorganic carbon are progressively enriched in subsurface waters across the shelf, contrary to cross-shelf reductions in heat, salinity and density. We use nutrient stoichiometric and isotopic approaches to invoke remineralization of organic matter, including nitrification below the euphotic surface layer, and dissolution of biogenic silica in deeper waters and potentially shelf sediment porewaters, as the primary drivers of cross-shelf enrichments. Regenerated nitrate and phosphate account for a significant proportion of the total pools of these nutrients in the upper ocean, with implications for the seasonal carbon sink. Understanding nutrient and carbon dynamics in this region now will inform predictions of future biogeochemical changes in the context of substantial variability and ongoing changes in the physical environment.This article is part of the theme issue 'The marine system of the West Antarctic Peninsula: status and strategy for progress in a region of rapid change'.

8.
Philos Trans A Math Phys Eng Sci ; 376(2122)2018 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-29760113

RESUMO

The Southern Ocean is a hotspot of the climate-relevant organic sulfur compound dimethyl sulfide (DMS). Spatial and temporal variability in DMS concentration is higher than in any other oceanic region, especially in the marginal ice zone. During a one-week expedition across the continental shelf of the West Antarctic Peninsula (WAP), from the shelf break into Marguerite Bay, in January 2015, spatial heterogeneity of DMS and its precursor dimethyl sulfoniopropionate (DMSP) was studied and linked with environmental conditions, including sea-ice melt events. Concentrations of sulfur compounds, particulate organic carbon (POC) and chlorophyll a in the surface waters varied by a factor of 5-6 over the entire transect. DMS and DMSP concentrations were an order of magnitude higher than currently inferred in climatologies for the WAP region. Particulate DMSP concentrations were correlated most strongly with POC and the abundance of haptophyte algae within the phytoplankton community, which, in turn, was linked with sea-ice melt. The strong sea-ice signal in the distribution of DMS(P) implies that DMS(P) production is likely to decrease with ongoing reductions in sea-ice cover along the WAP. This has implications for feedback processes on the region's climate system.This article is part of the theme issue 'The marine system of the West Antarctic Peninsula: status and strategy for progress in a region of rapid change'.

9.
Philos Trans A Math Phys Eng Sci ; 376(2122)2018 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-29760115

RESUMO

The spatial distribution, biogeochemical cycling and external sources of dissolved iron and dissolved manganese (DFe and DMn) were investigated in Ryder Bay, a small coastal embayment of the West Antarctic Peninsula, during Austral summer (2013 and 2014). Dissolved concentrations were measured throughout the water column at 11 stations within Ryder Bay. The concentration ranges of DFe and DMn were large, between 0.58 and 32.7 nM, and between 0.18 and 26.2 nM, respectively, exhibiting strong gradients from the surface to the bottom. Surface concentrations of DFe and DMn were higher than concentrations reported for the Southern Ocean and coastal Antarctic waters, and extremely high concentrations were detected in deep water. Glacial meltwater and shallow sediments are likely to be the main sources of DFe and DMn in the euphotic zone, while lateral advection associated with local sediment resuspension and vertical mixing are significant sources for intermediate and deep waters. During summer, vertical mixing of intermediate and deep waters and sediment resuspension occurring from Marguerite Trough to Ryder Bay are thought to be amplified by a series of overflows at the sills, enhancing the input of Fe and Mn from bottom sediment and increasing their concentrations up to the euphotic layer.This article is part of the theme issue 'The marine system of the West Antarctic Peninsula: status and strategy for progress in a region of rapid change'.

10.
Philos Trans A Math Phys Eng Sci ; 376(2122)2018 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-29760117

RESUMO

The West Antarctic Peninsula (WAP) is a climatically sensitive region where periods of strong warming have caused significant changes in the marine ecosystem and food-web processes. Tight coupling between phytoplankton and higher trophic levels implies that the coastal WAP is a bottom-up controlled system, where changes in phytoplankton dynamics may largely impact other food-web components. Here, we analysed the inter-decadal time series of year-round chlorophyll-a (Chl) collected from three stations along the coastal WAP: Carlini Station at Potter Cove (PC) on King George Island, Palmer Station on Anvers Island and Rothera Station on Adelaide Island. There were trends towards increased phytoplankton biomass at Carlini Station (PC) and Palmer Station, while phytoplankton biomass declined significantly at Rothera Station over the studied period. The impacts of two relevant climate modes to the WAP, the El Niño-Southern Oscillation and the Southern Annular Mode, on winter and spring phytoplankton biomass appear to be different among the three sampling stations, suggesting an important role of local-scale forcing than large-scale forcing on phytoplankton dynamics at each station. The inter-annual variability of seasonal bloom progression derived from considering all three stations together captured ecologically meaningful, seasonally co-occurring bloom patterns which were primarily constrained by water-column stability strength. Our findings highlight a coupled link between phytoplankton and physical and climate dynamics along the coastal WAP, which may improve our understanding of overall WAP food-web responses to climate change and variability.This article is part of the theme issue 'The marine system of the West Antarctic Peninsula: status and strategy for progress in a region of rapid change'.


Assuntos
Biomassa , Monitoramento Ambiental , Fitoplâncton/metabolismo , Análise de Variância , Regiões Antárticas , Clorofila/análogos & derivados , Clorofila/metabolismo , Mudança Climática , Cadeia Alimentar , Fatores de Tempo
11.
Environ Microbiol ; 19(2): 740-755, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27902869

RESUMO

An 8-year time-series in the Western Antarctic Peninsula (WAP) with an approximately weekly sampling frequency was used to elucidate changes in virioplankton abundance and their drivers in this climatically sensitive region. Virioplankton abundances at the coastal WAP show a pronounced seasonal cycle with interannual variability in the timing and magnitude of the summer maxima. Bacterioplankton abundance is the most influential driving factor of the virioplankton, and exhibit closely coupled dynamics. Sea ice cover and duration predetermine levels of phytoplankton stock and thus, influence virioplankton by dictating the substrates available to the bacterioplankton. However, variations in the composition of the phytoplankton community and particularly the prominence of Diatoms inferred from silicate drawdown, drive interannual differences in the magnitude of the virioplankton bloom; likely again mediated through changes in the bacterioplankton. Their findings suggest that future warming within the WAP will cause changes in sea ice that will influence viruses and their microbial hosts through changes in the timing, magnitude and composition of the phytoplankton bloom. Thus, the flow of matter and energy through the viral shunt may be decreased with consequences for the Antarctic food web and element cycling.


Assuntos
Ecossistema , Vírus/isolamento & purificação , Regiões Antárticas , Organismos Aquáticos , Mudança Climática , Cadeia Alimentar , Camada de Gelo/virologia , Fitoplâncton/genética , Fitoplâncton/crescimento & desenvolvimento , Fitoplâncton/isolamento & purificação , Estações do Ano , Vírus/classificação , Vírus/genética
13.
Glob Chang Biol ; 20(10): 3004-25, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24802817

RESUMO

Antarctic and Southern Ocean (ASO) marine ecosystems have been changing for at least the last 30 years, including in response to increasing ocean temperatures and changes in the extent and seasonality of sea ice; the magnitude and direction of these changes differ between regions around Antarctica that could see populations of the same species changing differently in different regions. This article reviews current and expected changes in ASO physical habitats in response to climate change. It then reviews how these changes may impact the autecology of marine biota of this polar region: microbes, zooplankton, salps, Antarctic krill, fish, cephalopods, marine mammals, seabirds, and benthos. The general prognosis for ASO marine habitats is for an overall warming and freshening, strengthening of westerly winds, with a potential pole-ward movement of those winds and the frontal systems, and an increase in ocean eddy activity. Many habitat parameters will have regionally specific changes, particularly relating to sea ice characteristics and seasonal dynamics. Lower trophic levels are expected to move south as the ocean conditions in which they are currently found move pole-ward. For Antarctic krill and finfish, the latitudinal breadth of their range will depend on their tolerance of warming oceans and changes to productivity. Ocean acidification is a concern not only for calcifying organisms but also for crustaceans such as Antarctic krill; it is also likely to be the most important change in benthic habitats over the coming century. For marine mammals and birds, the expected changes primarily relate to their flexibility in moving to alternative locations for food and the energetic cost of longer or more complex foraging trips for those that are bound to breeding colonies. Few species are sufficiently well studied to make comprehensive species-specific vulnerability assessments possible. Priorities for future work are discussed.


Assuntos
Organismos Aquáticos , Mudança Climática , Camada de Gelo , Regiões Antárticas , Biota , Ecossistema , Oceanos e Mares , Movimentos da Água , Vento
14.
J Anim Ecol ; 83(5): 1057-67, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24846695

RESUMO

Understanding the demographic response of free-living animal populations to different drivers is the first step towards reliable prediction of population trends. Penguins have exhibited dramatic declines in population size, and many studies have linked this to bottom-up processes altering the abundance of prey species. The effects of individual traits have been considered to a lesser extent, and top-down regulation through predation has been largely overlooked due to the difficulties in empirically measuring this at sea where it usually occurs. For 10 years (2003-2012), macaroni penguins (Eudyptes chrysolophus) were marked with subcutaneous electronic transponder tags and re-encountered using an automated gateway system fitted at the entrance to the colony. We used multistate mark-recapture modelling to identify the different drivers influencing survival rates and a sensitivity analysis to assess their relative importance across different life stages. Survival rates were low and variable during the fledging year (mean = 0·33), increasing to much higher levels from age 1 onwards (mean = 0·89). We show that survival of macaroni penguins is driven by a combination of individual quality, top-down predation pressure and bottom-up environmental forces. The relative importance of these covariates was age specific. During the fledging year, survival rates were most sensitive to top-down predation pressure, followed by individual fledging mass, and finally bottom-up environmental effects. In contrast, birds older than 1 year showed a similar response to bottom-up environmental effects and top-down predation pressure. We infer from our results that macaroni penguins will most likely be negatively impacted by an increase in the local population size of giant petrels. Furthermore, this population is, at least in the short term, likely to be positively influenced by local warming. More broadly, our results highlight the importance of considering multiple causal effects across different life stages when examining the survival rates of seabirds.


Assuntos
Aves , Clima , Ecossistema , Spheniscidae/fisiologia , Fatores Etários , Animais , Regiões Antárticas , Cadeia Alimentar , Estágios do Ciclo de Vida , Dinâmica Populacional , Comportamento Predatório/fisiologia , Taxa de Sobrevida
17.
Nat Commun ; 14(1): 7535, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38016938

RESUMO

Ice dynamic change is the primary cause of mass loss from the Antarctic Ice Sheet, thus it is important to understand the processes driving ice-ocean interactions and the timescale on which major change can occur. Here we use satellite observations to measure a rapid increase in speed and collapse of the ice shelf fronting Cadman Glacier in the absence of surface meltwater ponding. Between November 2018 and December 2019 ice speed increased by 94 ± 4% (1.47 ± 0.6 km/yr), ice discharge increased by 0.52 ± 0.21 Gt/yr, and the calving front retreated by 8 km with dynamic thinning on grounded ice of 20.1 ± 2.6 m/yr. This change was concurrent with a positive temperature anomaly in the upper ocean, where a 400 m deep channel allowed warm water to reach Cadman Glacier driving the dynamic activation, while neighbouring Funk and Lever Glaciers were protected by bathymetric sills across their fjords. Our results show that forcing by warm ocean water can cause the rapid onset of dynamic imbalance and increased ice discharge from glaciers on the Antarctic Peninsula, highlighting the region's sensitivity to future climate variability.

18.
Sci Data ; 10(1): 265, 2023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-37164979

RESUMO

Oceanographic changes adjacent to Antarctica have global climatic and ecological impacts. However, this is the most challenging place in the world to obtain marine data due to its remoteness and inhospitable nature, especially in winter. Here, we present more than 2000 Conductivity-Temperature-Depth (CTD) profiles and associated water sample data collected with (almost uniquely) full year-round coverage from the British Antarctic Survey Rothera Research Station at the west Antarctic Peninsula. Sampling is conducted from a small boat or a sled, depending on the sea ice conditions. When conditions allow, sampling is twice weekly in summer and weekly in winter, with profiling to nominally 500 m and with discrete water samples taken at 15 m water depth. Daily observations are made of the sea ice conditions in the area. This paper presents the first 20 years of data collection, 1997-2017. This time series represents a unique and valuable resource for investigations of the high-latitude ocean's role in climate change, ocean/ice interactions, and marine biogeochemistry and carbon drawdown.

19.
Sci Adv ; 8(47): eadd0720, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36417533

RESUMO

Ocean mixing around Antarctica exerts key influences on glacier dynamics and ice shelf retreats, sea ice, and marine productivity, thus affecting global sea level and climate. The conventional paradigm is that this is dominated by winds, tides, and buoyancy forcing. Direct observations from the Antarctic Peninsula demonstrate that glacier calving triggers internal tsunamis, the breaking of which drives vigorous mixing. Being widespread and frequent, these internal tsunamis are at least comparable to winds, and much more important than tides, in driving regional shelf mixing. They are likely relevant everywhere that marine-terminating glaciers calve, including Greenland and across the Arctic. Calving frequency may change with higher ocean temperatures, suggesting possible shifts to internal tsunamigenesis and mixing in a warming climate.

20.
Microorganisms ; 9(2)2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33672195

RESUMO

The relative flow of carbon through the viral shunt and the microbial loop is a pivotal factor controlling the contribution of secondary production to the food web and to rates of nutrient remineralization and respiration. The current study examines the significance of these processes in the coastal waters of the Antarctic during the productive austral summer months. Throughout the study a general trend towards lower bacterioplankton and heterotrophic nanoflagellate (HNF) abundances was observed, whereas virioplankton concentration increased. A corresponding decline of HNF grazing rates and shift towards viral production, indicative of viral infection, was measured. Carbon flow mediated by HNF grazing decreased by more than half from 5.7 µg C L-1 day-1 on average in December and January to 2.4 µg C L-1 day-1 in February. Conversely, carbon flow through the viral shunt increased substantially over the study from on average 0.9 µg C L-1 day-1 in December to 7.6 µg C L-1 day-1 in February. This study shows that functioning of the coastal Antarctic microbial community varied considerably over the productive summer months. In early summer, the system favors transfer of matter and energy to higher trophic levels via the microbial loop, however towards the end of summer carbon flow is redirected towards the viral shunt, causing a switch towards more recycling and therefore increased respiration and regeneration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA