RESUMO
The evolution of advanced cognition in vertebrates is associated with two independent innovations in the forebrain: the six-layered neocortex in mammals and the dorsal ventricular ridge (DVR) in sauropsids (reptiles and birds). How these innovations arose in vertebrate ancestors remains unclear. To reconstruct forebrain evolution in tetrapods, we built a cell-type atlas of the telencephalon of the salamander Pleurodeles waltl. Our molecular, developmental, and connectivity data indicate that parts of the sauropsid DVR trace back to tetrapod ancestors. By contrast, the salamander dorsal pallium is devoid of cellular and molecular characteristics of the mammalian neocortex yet shares similarities with the entorhinal cortex and subiculum. Our findings chart the series of innovations that resulted in the emergence of the mammalian six-layered neocortex and the sauropsid DVR.
Assuntos
Evolução Biológica , Neurônios , Pleurodeles , Telencéfalo , Animais , Atlas como Assunto , Neocórtex/citologia , Neocórtex/fisiologia , Neurônios/metabolismo , Pleurodeles/fisiologia , Telencéfalo/citologia , Telencéfalo/fisiologia , TranscriptomaRESUMO
Epilepsy is a neurological disorder of genetic or environmental origin characterized by recurrent spontaneous seizures. A rodent model of temporal lobe epilepsy is induced by a single administration of pilocarpine, a non-selective cholinergic muscarinic receptor agonist. The molecular changes associated with pilocarpine-induced seizures are still poorly described. Epigenetic multiprotein complexes that regulate gene expression by changing the structure of chromatin impose transcriptional memories. Among the epigenetic enzymes relevant to the epileptogenic process is lysine-specific demethylase 1 (LSD1, KDM1A), which regulates the expression of genes that control neuronal excitability. LSD1 forms complexes with the CoREST family of transcriptional corepressors, which are molecular bridges that bring HDAC1/2 and LSD1 enzymes to deacetylate and demethylate the tail of nucleosomal histone H3. To test the hypothesis that LSD1-complexes are involved in initial modifications associated with pilocarpine-induced epilepsy, we studied the expression of main components of LSD1-complexes and the associated epigenetic marks on isolated neurons and the hippocampus of pilocarpine-treated mice. Using a single injection of 300 mg/kg of pilocarpine and after 24 h, we found that protein levels of LSD1, CoREST2, and HDAC1/2 increased, while CoREST1 decreased in the hippocampus. In addition, we observed increased histone H3 lysine 9 di- and trimethylation (H3K9me2/3) and decreased histone H3 lysine 4 di and trimethylation (H3K4me2/3). Similar findings were observed in cultured hippocampal neurons and HT-22 hippocampal cell line treated with pilocarpine. In conclusion, our data show that muscarinic receptor activation by pilocarpine induces a global repressive state of chromatin and prevalence of LSD1-CoREST2 epigenetic complexes, modifications that could underlie the pathophysiological processes leading to epilepsy.
RESUMO
BACKGROUND: Nuclear processes such as transcription and RNA maturation can be impacted by subnuclear compartmentalization in condensates and nuclear bodies. Here, we characterize the nature of nuclear granules formed by REST corepressor 2 (RCOR2), a nuclear protein essential for pluripotency maintenance and central nervous system development. RESULTS: Using biochemical approaches and high-resolution microscopy, we reveal that RCOR2 is localized in nuclear speckles across multiple cell types, including neurons in the brain. RCOR2 forms complexes with nuclear speckle components such as SON, SRSF7, and SRRM2. When cells are exposed to chemical stress, RCOR2 behaves as a core component of the nuclear speckle and is stabilized by RNA. In turn, nuclear speckle morphology appears to depend on RCOR2. Specifically, RCOR2 knockdown results larger nuclear speckles, whereas overexpressing RCOR2 leads to smaller and rounder nuclear speckles. CONCLUSION: Our study suggests that RCOR2 is a regulatory component of the nuclear speckle bodies, setting this co-repressor protein as a factor that controls nuclear speckles behavior.