Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Neurophysiol ; 131(6): 1143-1155, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38658179

RESUMO

Although perceptual thresholds have been widely studied, vestibuloocular reflex (VOR) thresholds have received less attention, so the relationship between VOR and perceptual thresholds remains unclear. We compared the frequency dependence of human VOR thresholds to human perceptual thresholds for yaw head rotation in both upright ("yaw rotation") and supine ("yaw tilt") positions, using the same human subjects and motion device. VOR thresholds were generally a little smaller than perceptual thresholds. We also found that horizontal VOR thresholds for both yaw rotation about an Earth-vertical axis and yaw tilt (yaw rotation about an Earth-horizontal axis) were relatively constant across four frequencies (0.2, 0.5, 1, and 2 Hz), with little difference between yaw rotation and yaw tilt VOR thresholds. For yaw tilt stimuli, perceptual thresholds were slightly lower at the lowest frequency and nearly constant at all other (higher) frequencies. However, for yaw rotation, perceptual thresholds increased significantly at the lowest frequency (0.2 Hz). We conclude 1) that VOR thresholds were relatively constant across frequency for both yaw rotation and yaw tilt, 2) that the known contributions of velocity storage to the VOR likely yielded these VOR thresholds that were similar for yaw rotation and yaw tilt for all frequencies tested, and 3) that the integration of otolith and horizontal canal signals during yaw tilt when supine contributes to stable perceptual thresholds, especially relative to the low-frequency perceptual thresholds recorded during yaw rotation.NEW & NOTEWORTHY We describe for the first time that human VOR thresholds differ from human forced-choice perceptual thresholds, with the difference especially evident at frequencies below 0.5 Hz. We also report that VOR thresholds are relatively constant across frequency for both yaw rotation and yaw tilt. These findings are consistent with the idea that high-pass filtering in cortical pathways impacts cognitive decision-making.


Assuntos
Reflexo Vestíbulo-Ocular , Limiar Sensorial , Humanos , Reflexo Vestíbulo-Ocular/fisiologia , Masculino , Feminino , Adulto , Rotação , Limiar Sensorial/fisiologia , Movimentos da Cabeça/fisiologia , Adulto Jovem
2.
Exp Brain Res ; 242(2): 385-402, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38135820

RESUMO

Vestibular contributions to linear motion (i.e., translation) perception mediated by the otoliths have yet to be fully characterized. To quantify the maximal extent that non-vestibular cues can contribute to translation perception, we assessed vestibular perceptual thresholds in two patients with complete bilateral vestibular ablation to compare to our data in 12 young (< 40 years), healthy controls. Vestibular thresholds were assessed for naso-occipital ("x-translation"), inter-aural ("y-translation"), and superior-inferior ("z-translation") translations in three body orientations (upright, supine, side-lying). Overall, in our patients with bilateral complete vestibular loss, thresholds were elevated ~ 2-45 times relative to healthy controls. No systematic differences in vestibular perceptual thresholds were noted between motions that differed only with respect to their orientation relative to the head (i.e., otoliths) in patients with bilateral vestibular loss. In addition, bilateral loss patients tended to show a larger impairment in the perception of earth-vertical translations (i.e., motion parallel to gravity) relative to earth-horizontal translations, which suggests increased contribution of the vestibular system for earth-vertical motions. However, differences were also noted between the two patients. Finally, with the exception of side-lying x-translations, no consistent effects of body orientation in our bilateral loss patients were seen independent from those resulting from changes in the plane of translation relative to gravity. Overall, our data confirm predominant vestibular contributions to whole-body direction-recognition translation tasks and provide fundamental insights into vestibular contributions to translation motion perception.


Assuntos
Percepção de Movimento , Vestíbulo do Labirinto , Humanos , Movimento (Física) , Gravitação
3.
Exp Brain Res ; 241(7): 1873-1885, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37310477

RESUMO

Vestibular perceptual thresholds provide insights into sensory function and have shown clinical and functional relevance. However, specific sensory contributions to tilt and rotation thresholds have been incompletely characterized. To address this limitation, tilt thresholds (i.e., rotations about earth-horizontal axes) were quantified to assess canal-otolith integration, and rotation thresholds (i.e., rotations about earth-vertical axes) were quantified to assess perception mediated predominantly by the canals. To determine the maximal extent to which non-vestibular sensory cues (e.g., tactile) can contribute to tilt and rotation thresholds, we tested two patients with completely absent vestibular function and compared their data to those obtained from two separate cohorts of young (≤ 40 years), healthy adults. As one primary finding, thresholds for all motions were elevated by approximately 2-35 times in the absence of vestibular function, thus, confirming predominant vestibular contributions to both rotation and tilt self-motion perception. For patients without vestibular function, rotation thresholds showed larger increases relative to healthy adults than tilt thresholds. This suggests that increased extra-vestibular (e.g., tactile or interoceptive) sensory cues may contribute more to the perception of tilt than rotation. In addition, an impact of stimulus frequency was noted, suggesting increased vestibular contributions relative to other sensory systems can be targeted on the basis of stimulus frequency.


Assuntos
Percepção de Movimento , Vestíbulo do Labirinto , Humanos , Movimento (Física)
4.
J Neurosci ; 41(17): 3879-3888, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33731447

RESUMO

Gravity is a pervasive environmental stimulus, and accurate graviception is required for optimal spatial orientation and postural stability. The primary graviceptors are the vestibular organs, which include angular velocity (semicircular canals) and linear acceleration (otolith organs) sensors. Graviception is degraded in patients with vestibular damage, resulting in spatial misperception and imbalance. Since minimal therapy is available for these patients, substantial effort has focused on developing a vestibular prosthesis or vestibular implant (VI) that reproduces information normally provided by the canals (since reproducing otolith function is very challenging technically). Prior studies demonstrated that angular eye velocity responses could be driven by canal VI-mediated angular head velocity information, but it remains unknown whether a canal VI could improve spatial perception and posture since these behaviors require accurate estimates of angular head position in space relative to gravity. Here, we tested the hypothesis that a canal VI that transduces angular head velocity and provides this information to the brain via motion-modulated electrical stimulation of canal afferent nerves could improve the perception of angular head position relative to gravity in monkeys with severe vestibular damage. Using a subjective visual vertical task, we found that normal female monkeys accurately sensed the orientation of the head relative to gravity during dynamic tilts, that this ability was degraded following bilateral vestibular damage, and improved when the canal VI was used. These results demonstrate that a canal VI can improve graviception in vestibulopathic animals, suggesting that it could reduce the disabling perceptual and postural deficits experienced by patients with severe vestibular damage.SIGNIFICANCE STATEMENT Patients with vestibular damage experience impaired vision, spatial perception, and balance, symptoms that could potentially respond to a vestibular implant (VI). Anatomic features facilitate semicircular canal (angular velocity) prosthetics but inhibit approaches with the otolith (linear acceleration) organs, and canal VIs that sense angular head velocity can generate compensatory eye velocity responses in vestibulopathic subjects. Can the brain use canal VI head velocity information to improve estimates of head orientation (e.g., head position relative to gravity), which is a prerequisite for accurate spatial perception and posture? Here we show that a canal VI can improve the perception of head orientation in vestibulopathic monkeys, results that are highly significant because they suggest that VIs mimicking canal function can improve spatial orientation and balance in vestibulopathic patients.


Assuntos
Orientação Espacial , Próteses e Implantes , Vestíbulo do Labirinto/lesões , Algoritmos , Animais , Meato Acústico Externo , Eletrodos Implantados , Movimentos Oculares , Feminino , Gravitação , Movimentos da Cabeça , Macaca mulatta , Postura , Reflexo Vestíbulo-Ocular/fisiologia
5.
J Neurophysiol ; 128(3): 619-633, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35894439

RESUMO

The present study aimed to determine if a vestibular perceptual learning intervention could improve roll tilt self-motion perception and balance performance. Two intervention groups (n = 10 each) performed 1,300 trials of roll tilt at either 0.5 Hz (2 s/motion) or 0.2 Hz (5 s/motion) distributed over 5 days; each intervention group was provided feedback (correct/incorrect) after each trial. Roll tilt perceptual thresholds, measured using 0.2-, 0.5-, and 1-Hz stimuli, as well as quiet stance postural sway, were measured on day 1 and day 6 of the study. The control group (n = 10) who performed no perceptual training, showed stable 0.2-Hz (+1.48%, P > 0.99), 0.5-Hz (-4.0%, P > 0.99), and 1-Hz (-17.48%, P = 0.20) roll tilt thresholds. The 0.2-Hz training group demonstrated significant improvements in both 0.2-Hz (-23.77%, P = 0.003) and 0.5-Hz (-22.2%, P = 0.03) thresholds. The 0.5-Hz training group showed a significant improvement in 0.2-Hz thresholds (-19.13%, P = 0.029), but not 0.5-Hz thresholds (-17.68%, P = 0.052). Neither training group improved significantly at the untrained 1-Hz frequency (P > 0.05). In addition to improvements in perceptual precision, the 0.5-Hz training group showed a decrease in sway when measured during "eyes open, on foam" (dz = 0.57, P = 0.032) and "eyes closed, on foam" (dz = 2.05, P < 0.001) quiet stance balance tasks. These initial data suggest that roll tilt perception can be improved with less than 5 h of training and that vestibular perceptual training may contribute to a reduction in subclinical postural instability.NEW & NOTEWORTHY Roll tilt vestibular perceptual thresholds, an assay of vestibular noise, were recently found to correlate with postural sway. We therefore hypothesized that roll tilt perceptual training would yield improvements in both perceptual precision and balance. Our data show that roll tilt perceptual thresholds and quiet stance postural sway can be significantly improved after less than 5 h of roll tilt perceptual training, supporting the hypothesis that vestibular noise contributes to increased postural sway.


Assuntos
Percepção de Movimento , Vestíbulo do Labirinto , Aprendizagem , Movimento (Física) , Equilíbrio Postural
6.
J Neurophysiol ; 126(3): 875-887, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34320866

RESUMO

Accurate perception of gravity and translation is fundamental for balance, navigation, and motor control. Previous studies have reported that perceptual thresholds for earth-vertical (i.e., parallel to gravity) and earth-horizontal (i.e., perpendicular to gravity) translations are equivalent in healthy adults, suggesting that the nervous system compensates for the presence of gravity. However, past study designs were not able to fully separate the effect of gravity from the potential effects of motion direction and body orientation. To quantify the effect of gravity on translation perception relative to these alternative factors, we measured vestibular perceptual thresholds for three motion directions (inter-aural, naso-occipital, and superior-inferior) and three body orientations (upright, supine, and ear-down). In contrast to prior reports, our data suggest that the nervous system does not universally compensate for the effects of gravity during translation, instead, we show that the colinear effect of gravity significantly decreases the sensitivity to stimuli for motions sensed by the utricles (inter-aural and naso-occipital translation), but this effect was not significant for motions sensed by the saccules (superior-inferior translations). We also identified increased thresholds for superior-inferior translation, suggesting decreased sensitivity of motions sensed predominantly by the saccule. An overall effect of body orientation on perception was seen; however, post hoc analyses suggest that this orientation effect may reflect the impact of gravity on self-motion perception. Overall, our data provide fundamental insights into the manner by which the nervous system processes vestibular self-motion cues, showing that the effect of gravity on translation perception is impacted by the direction of motion.NEW & NOTEWORTHY Perception of gravity and translation are fundamental for self-motion perception, balance, and motor control. The central nervous system must accurately disambiguate peripheral otolith signals encoding both linear acceleration and gravity. In contrast to past reports, we show that perception of translation depends on both motion relative to gravity and motion relative to the head. These results provide fundamental insights into otolith-mediated perception and suggest that the nervous system must compensate for the presence of gravity.


Assuntos
Sensação Gravitacional , Percepção de Movimento , Vestíbulo do Labirinto/fisiologia , Adulto , Feminino , Humanos , Masculino , Postura
7.
J Neurophysiol ; 125(2): 672-686, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33502934

RESUMO

Controlling posture requires continuous sensory feedback about body motion and orientation, including from the vestibular organs. Little is known about the role of tilt vs. translation vs. rotation vestibular cues. We examined whether intersubject differences in vestibular function were correlated with intersubject differences in postural control. Vestibular function was assayed using vestibular direction-recognition perceptual thresholds, which determine the smallest motion that can be reliably perceived by a subject seated on a motorized platform in the dark. In study A, we measured thresholds for lateral translation, vertical translation, yaw rotation, and head-centered roll tilts. In study B, we measured thresholds for roll, pitch, and left anterior-right posterior and right anterior-left posterior tilts. Center-of-pressure (CoP) sway was measured in sensory organization tests (study A) and Romberg tests (study B). We found a strong positive relationship between CoP sway and lateral translation thresholds but not CoP sway and other thresholds. This finding suggests that the vestibular encoding of lateral translation may contribute substantially to balance control. Since thresholds assay sensory noise, our results support the hypothesis that vestibular noise contributes to spontaneous postural sway. Specifically, we found that lateral translation thresholds explained more of the variation in postural sway in postural test conditions with altered proprioceptive cues (vs. a solid surface), consistent with postural sway being more dependent on vestibular noise when the vestibular contribution to balance is higher. These results have potential implications for vestibular implants, balance prostheses, and physical therapy exercises.NEW & NOTEWORTHY Vestibular feedback is important for postural control, but little is known about the role of tilt cues vs. translation cues vs. rotation cues. We studied healthy human subjects with no known vestibular pathology or symptoms. Our findings showed that vestibular encoding of lateral translation correlated with medial-lateral postural sway, consistent with lateral translation cues contributing to balance control. This adds support to the hypothesis that vestibular noise contributes to spontaneous postural sway.


Assuntos
Sinais (Psicologia) , Equilíbrio Postural , Vestíbulo do Labirinto/fisiologia , Adulto , Retroalimentação Sensorial , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Propriocepção , Limiar Sensorial
8.
J Neurophysiol ; 123(4): 1566-1577, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32208896

RESUMO

When making decisions, people naturally ask two implicit questions: how soon can I make a decision, and how certain am I? In perception, people's confidence (how certain?) shows a nonmonotonic relationship with response time (how soon?), such that choice confidence can either increase or decrease with response time. Although a frontoparietal network has been implicated as a neural substrate that binds choice confidence and action (e.g., response time), the dynamic interplay between choice behaviors within such a network has not been clarified. Here, we show that frontal event-related potentials (ERPs) reflect choice confidence before a decision. Specifically, we report a second positive peak of the stimulus-locked frontal ERP at ~500 ms that scales with confidence but not stimulus level, whereas the centroparietal ERP amplitude covaries inversely with response time. This frontal ERP component occurs before the response, which helps explain the inverse relationship between choice confidence and response time (i.e., higher confidence for shorter response time) when choice accuracy is emphasized over speed. Our findings provide the first early neural representation of confidence, consistent with the temporal precedence for its causal role in the current decision-making task: "I decided earlier because I am confident."NEW & NOTEWORTHY We report novel neural correlates of predecisional choice confidence in frontal scalp potential in humans. In conjunction with the centroparietal choice-action event-related potential component, this new frontal choice confidence component further elucidates the dynamics of the frontoparietal decision-making neural circuitry.


Assuntos
Comportamento de Escolha/fisiologia , Potenciais Evocados/fisiologia , Lobo Frontal/fisiologia , Metacognição/fisiologia , Tempo de Reação/fisiologia , Adulto , Eletroencefalografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Rede Nervosa/fisiologia , Lobo Parietal/fisiologia , Adulto Jovem
9.
J Neurophysiol ; 122(3): 904-921, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31215314

RESUMO

Decision making is a fundamental subfield within neuroscience. While recent findings have yielded major advances in our understanding of decision making, confidence in such decisions remains poorly understood. In this paper, we present a confidence signal detection (CSD) model that combines a standard signal detection model yielding a noisy decision variable with a model of confidence. The CSD model requires quantitative measures of confidence obtained by recording confidence probability judgments. Specifically, we model confidence probability judgments for binary direction recognition (e.g., did I move left or right) decisions. We use our CSD model to study both confidence calibration (i.e., how does confidence compare with performance) and the distributions of confidence probability judgments. We evaluate two variants of our CSD model: a conventional model with two free parameters (CSD2) that assumes that confidence is well calibrated and our new model with three free parameters (CSD3) that includes an additional confidence scaling factor. On average, our CSD2 and CSD3 models explain 73 and 82%, respectively, of the variance found in our empirical data set. Furthermore, for our large data sets consisting of 3,600 trials per subject, correlation and residual analyses suggest that the CSD3 model better explains the predominant aspects of the empirical data than the CSD2 model, especially for subjects whose confidence is not well calibrated. Moreover, simulations show that asymmetric confidence distributions can lead traditional confidence calibration analyses to suggest "underconfidence" even when confidence is perfectly calibrated. These findings show that this CSD model can be used to help improve our understanding of confidence and decision making.NEW & NOTEWORTHY We make life-or-death decisions each day; our actions depend on our "confidence." Though confidence, accuracy, and response time are the three pillars of decision making, we know little about confidence. In a previous paper, we presented a new model - dependent on a single scaling parameter - that transforms decision variables to confidence. Here we show that this model explains the empirical human confidence distributions obtained during a vestibular direction recognition task better than standard signal detection models.


Assuntos
Tomada de Decisões/fisiologia , Julgamento/fisiologia , Metacognição/fisiologia , Modelos Teóricos , Percepção de Movimento/fisiologia , Detecção de Sinal Psicológico/fisiologia , Adulto , Feminino , Humanos , Masculino
10.
J Neurophysiol ; 119(4): 1485-1496, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29357467

RESUMO

When forced to choose humans often feel uncertain. Investigations of human perceptual decision-making often employ signal detection theory, which assumes that even when uncertain all available information is fully utilized. However, other studies have suggested or assumed that, when uncertain, human subjects guess totally at random, ignoring available information. When uncertain, do humans simply guess totally at random? Or do humans fully utilize complete information? Or does behavior fall between these two extremes yielding "above chance" performance without fully utilizing complete information? While it is often assumed complete information is fully utilized, even when uncertain, to our knowledge this has never been experimentally confirmed. To answer this question, we combined numerical simulations, theoretical analyses, and human studies performed using a self-motion direction-recognition perceptual decision-making task (did I rotate left or right?). Subjects were instructed to make forced-choice binary (left/right) and trinary (left/right/uncertain) decisions when cued following each stimulus. Our results show that humans 1) do not guess at random when uncertain and 2) make binary and trinary decisions equally well. These findings show that humans fully utilize complete information when uncertain for our perceptual decision-making task. This helps unify signal detection theory and other models of forced-choice decision-making which allow for uncertain responses. NEW & NOTEWORTHY Humans make many perceptual decisions every day. But what if we are uncertain? While many studies assume that humans fully utilize complete information, other studies have suggested and/or assumed that when we're uncertain and forced to decide, information is not fully utilized. While humans tend to perform above chance when uncertain, no earlier study has tested whether available information is fully utilized. Our results show that humans make fully informed decisions even when uncertain.


Assuntos
Tomada de Decisões/fisiologia , Modelos Teóricos , Movimento/efeitos da radiação , Propriocepção/fisiologia , Percepção Espacial/fisiologia , Incerteza , Vestíbulo do Labirinto/fisiologia , Adulto , Simulação por Computador , Humanos
11.
J Neurophysiol ; 118(5): 2636-2653, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28747465

RESUMO

Humans can subjectively yet quantitatively assess choice confidence based on perceptual precision even when a perceptual decision is made without an immediate reward or feedback. However, surprisingly little is known about choice confidence. Here we investigate the dynamics of choice confidence by merging two parallel conceptual frameworks of decision making, signal detection theory and sequential analyses (i.e., drift-diffusion modeling). Specifically, to capture end-point statistics of binary choice and confidence, we built on a previous study that defined choice confidence in terms of psychophysics derived from signal detection theory. At the same time, we augmented this mathematical model to include accumulator dynamics of a drift-diffusion model to characterize the time dependence of the choice behaviors in a standard forced-choice paradigm in which stimulus duration is controlled by the operator. Human subjects performed a subjective visual vertical task, simultaneously reporting binary orientation choice and probabilistic confidence. Both binary choice and confidence experimental data displayed statistics and dynamics consistent with both signal detection theory and evidence accumulation, respectively. Specifically, the computational simulations showed that the unbounded evidence accumulator model fits the confidence data better than the classical bounded model, while bounded and unbounded models were indistinguishable for binary choice data. These results suggest that the brain can utilize mechanisms consistent with signal detection theory-especially when judging confidence without time pressure.NEW & NOTEWORTHY We found that choice confidence data show dynamics consistent with evidence accumulation for a forced-choice subjective visual vertical task. We also found that the evidence accumulation appeared unbounded when judging confidence, which suggests that the brain utilizes mechanisms consistent with signal detection theory to determine choice confidence.


Assuntos
Comportamento de Escolha , Percepção Visual , Adulto , Encéfalo/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Neurológicos
12.
J Neurophysiol ; 117(5): 2037-2052, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28179477

RESUMO

When making perceptual decisions, humans have been shown to optimally integrate independent noisy multisensory information, matching maximum-likelihood (ML) limits. Such ML estimators provide a theoretic limit to perceptual precision (i.e., minimal thresholds). However, how the brain combines two interacting (i.e., not independent) sensory cues remains an open question. To study the precision achieved when combining interacting sensory signals, we measured perceptual roll tilt and roll rotation thresholds between 0 and 5 Hz in six normal human subjects. Primary results show that roll tilt thresholds between 0.2 and 0.5 Hz were significantly lower than predicted by a ML estimator that includes only vestibular contributions that do not interact. In this paper, we show how other cues (e.g., somatosensation) and an internal representation of sensory and body dynamics might independently contribute to the observed performance enhancement. In short, a Kalman filter was combined with an ML estimator to match human performance, whereas the potential contribution of nonvestibular cues was assessed using published bilateral loss patient data. Our results show that a Kalman filter model including previously proven canal-otolith interactions alone (without nonvestibular cues) can explain the observed performance enhancements as can a model that includes nonvestibular contributions.NEW & NOTEWORTHY We found that human whole body self-motion direction-recognition thresholds measured during dynamic roll tilts were significantly lower than those predicted by a conventional maximum-likelihood weighting of the roll angular velocity and quasistatic roll tilt cues. Here, we show that two models can each match this "apparent" better-than-optimal performance: 1) inclusion of a somatosensory contribution and 2) inclusion of a dynamic sensory interaction between canal and otolith cues via a Kalman filter model.


Assuntos
Sinais (Psicologia) , Interocepção , Postura , Adulto , Imagem Corporal , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Equilíbrio Postural , Vestíbulo do Labirinto/fisiologia
13.
J Neurophysiol ; 115(4): 1932-45, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26763777

RESUMO

Perceptual thresholds are commonly assayed in the laboratory and clinic. When precision and accuracy are required, thresholds are quantified by fitting a psychometric function to forced-choice data. The primary shortcoming of this approach is that it typically requires 100 trials or more to yield accurate (i.e., small bias) and precise (i.e., small variance) psychometric parameter estimates. We show that confidence probability judgments combined with a model of confidence can yield psychometric parameter estimates that are markedly more precise and/or markedly more efficient than conventional methods. Specifically, both human data and simulations show that including confidence probability judgments for just 20 trials can yield psychometric parameter estimates that match the precision of those obtained from 100 trials using conventional analyses. Such an efficiency advantage would be especially beneficial for tasks (e.g., taste, smell, and vestibular assays) that require more than a few seconds for each trial, but this potential benefit could accrue for many other tasks.


Assuntos
Modelos Neurológicos , Limiar Sensorial , Humanos , Limite de Detecção , Probabilidade , Psicometria/métodos , Psicometria/normas
14.
J Neurophysiol ; 115(1): 39-59, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26467513

RESUMO

Perceptual decision making is fundamental to a broad range of fields including neurophysiology, economics, medicine, advertising, law, etc. Although recent findings have yielded major advances in our understanding of perceptual decision making, decision making as a function of time and frequency (i.e., decision-making dynamics) is not well understood. To limit the review length, we focus most of this review on human findings. Animal findings, which are extensively reviewed elsewhere, are included when beneficial or necessary. We attempt to put these various findings and data sets, which can appear to be unrelated in the absence of a formal dynamic analysis, into context using published models. Specifically, by adding appropriate dynamic mechanisms (e.g., high-pass filters) to existing models, it appears that a number of otherwise seemingly disparate findings from the literature might be explained. One hypothesis that arises through this dynamic analysis is that decision making includes phasic (high pass) neural mechanisms, an evidence accumulator and/or some sort of midtrial decision-making mechanism (e.g., peak detector and/or decision boundary).


Assuntos
Encéfalo/fisiologia , Tomada de Decisões , Percepção , Animais , Humanos , Limiar Sensorial
15.
Exp Brain Res ; 234(3): 773-89, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26645306

RESUMO

When measuring thresholds, careful selection of stimulus amplitude can increase efficiency by increasing the precision of psychometric fit parameters (e.g., decreasing the fit parameter error bars). To find efficient adaptive algorithms for psychometric threshold ("sigma") estimation, we combined analytic approaches, Monte Carlo simulations, and human experiments for a one-interval, binary forced-choice, direction-recognition task. To our knowledge, this is the first time analytic results have been combined and compared with either simulation or human results. Human performance was consistent with theory and not significantly different from simulation predictions. Our analytic approach provides a bound on efficiency, which we compared against the efficiency of standard staircase algorithms, a modified staircase algorithm with asymmetric step sizes, and a maximum likelihood estimation (MLE) procedure. Simulation results suggest that optimal efficiency at determining threshold is provided by the MLE procedure targeting a fraction correct level of 0.92, an asymmetric 4-down, 1-up staircase targeting between 0.86 and 0.92 or a standard 6-down, 1-up staircase. Psychometric test efficiency, computed by comparing simulation and analytic results, was between 41 and 58% for 50 trials for these three algorithms, reaching up to 84% for 200 trials. These approaches were 13-21% more efficient than the commonly used 3-down, 1-up symmetric staircase. We also applied recent advances to reduce accuracy errors using a bias-reduced fitting approach. Taken together, the results lend confidence that the assumptions underlying each approach are reasonable and that human threshold forced-choice decision making is modeled well by detection theory models and mimics simulations based on detection theory models.


Assuntos
Simulação por Computador , Desempenho Psicomotor/fisiologia , Limiar Sensorial/fisiologia , Adulto , Feminino , Humanos , Funções Verossimilhança , Masculino , Pessoa de Meia-Idade , Psicometria
16.
J Neurophysiol ; 113(7): 2062-77, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25540216

RESUMO

Hypergravity provides a unique environment to study human perception of orientation. We utilized a long-radius centrifuge to study perception of both static and dynamic whole body roll tilt in hypergravity, across a range of angles, frequencies, and net gravito-inertial levels (referred to as G levels). While studies of static tilt perception in hypergravity have been published, this is the first to measure dynamic tilt perception (i.e., with time-varying canal stimulation) in hypergravity using a continuous matching task. In complete darkness, subjects reported their orientation perception using a haptic task, whereby they attempted to align a hand-held bar with their perceived horizontal. Static roll tilt was overestimated in hypergravity, with more overestimation at larger angles and higher G levels, across the conditions tested (overestimated by ∼35% per additional G level, P < 0.001). As our primary contribution, we show that dynamic roll tilt was also consistently overestimated in hypergravity (P < 0.001) at all angles and frequencies tested, again with more overestimation at higher G levels. The overestimation was similar to that for static tilts at low angular velocities but decreased at higher angular velocities (P = 0.006), consistent with semicircular canal sensory integration. To match our findings, we propose a modification to a previous Observer-type canal-otolith interaction model. Specifically, our data were better modeled by including the hypothesis that the central nervous system treats otolith stimulation in the utricular plane differently than stimulation out of the utricular plane. This modified model was able to simulate quantitatively both the static and the dynamic roll tilt overestimation in hypergravity measured experimentally.


Assuntos
Sensação Gravitacional/fisiologia , Hipergravidade , Percepção de Movimento/fisiologia , Canais Semicirculares/fisiologia , Percepção Espacial/fisiologia , Adulto , Feminino , Humanos , Masculino , Orientação/fisiologia , Adulto Jovem
17.
Exp Brain Res ; 233(5): 1409-20, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25651980

RESUMO

Hyper-gravity provides a unique environment to study how misperceptions impact control of orientation relative to gravity. Previous studies have found that static and dynamic roll tilts are perceptually overestimated in hyper-gravity. The current investigation quantifies how this influences control of orientation. We utilized a long-radius centrifuge to study manual control performance in hyper-gravity. In the dark, subjects were tasked with nulling out a pseudo-random roll disturbance on the cab of the centrifuge using a rotational hand controller to command their roll rate in order to remain perceptually upright. The task was performed in 1, 1.5, and 2 G's of net gravito-inertial acceleration. Initial performance, in terms of root-mean-square deviation from upright, degraded in hyper-gravity relative to 1 G performance levels. In 1.5 G, initial performance degraded by 26 % and in 2 G, by 45 %. With practice, however, performance in hyper-gravity improved to near the 1 G performance level over several minutes. Finally, pre-exposure to one hyper-gravity level reduced initial performance decrements in a different, novel, hyper-gravity level. Perceptual overestimation of roll tilts in hyper-gravity leads to manual control performance errors, which are reduced both with practice and with pre-exposure to alternate hyper-gravity stimuli.


Assuntos
Mãos , Hipergravidade , Desempenho Psicomotor/fisiologia , Adolescente , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Orientação , Psicofísica , Rotação , Percepção Espacial , Adulto Jovem
18.
J Neurophysiol ; 111(12): 2393-403, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24371292

RESUMO

Prior studies show that visual motion perception is more precise than vestibular motion perception, but it is unclear whether this is universal or the result of specific experimental conditions. We compared visual and vestibular motion precision over a broad range of temporal frequencies by measuring thresholds for vestibular (subject motion in the dark), visual (visual scene motion) or visual-vestibular (subject motion in the light) stimuli. Specifically, thresholds were measured for motion frequencies spanning a two-decade physiological range (0.05-5 Hz) using single-cycle sinusoidal acceleration roll tilt trajectories (i.e., distinguishing left-side down from right-side down). We found that, while visual and vestibular thresholds were broadly similar between 0.05 and 5.0 Hz, each cue is significantly more precise than the other at certain frequencies. Specifically, we found that 1) visual and vestibular thresholds were indistinguishable at 0.05 Hz and 2 Hz (i.e., similarly precise); 2) visual thresholds were lower (i.e., vision more precise) than vestibular thresholds between 0.1 Hz and 1 Hz; and 3) visual thresholds were higher (i.e., vision less precise) than vestibular thresholds above 2 Hz. This shows that vestibular perception can be more precise than visual perception at physiologically relevant frequencies. We also found that sensory integration of visual and vestibular information is consistent with static Bayesian optimal integration of visual-vestibular cues. In contrast with most prior work that degraded or altered sensory cues, we demonstrated static optimal integration using natural cues.


Assuntos
Percepção de Movimento , Limiar Sensorial , Percepção Visual , Adulto , Teorema de Bayes , Sinais (Psicologia) , Escuridão , Feminino , Humanos , Masculino , Modelos Neurológicos , Estimulação Física/métodos , Psicofísica
19.
Biomed Microdevices ; 16(6): 837-50, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25078417

RESUMO

Many neuroprosthetic applications require the use of very small, flexible multi-channel microelectrodes (e.g. polyimide-based film-like electrodes) to fit anatomical constraints. By arranging the electrode contacts on both sides of the polyimide film, selectivity can be further increased without increasing size. In this work, two approaches to create such double-sided electrodes are described and compared: sandwich electrodes prepared by precisely gluing two single-sided structures together, and monolithic electrodes created using a new double-sided photolithography process. Both methods were successfully applied to manufacture double-sided electrodes for stimulation of the vestibular system. In a case study, the electrodes were implanted in the semicircular canals of three guinea pigs and proven to provide electrical stimulation of the vestibular nerve. For both the monolithic electrodes and the sandwich electrodes, long-term stability and functionality was observed over a period of more than 12 months. Comparing the two types of electrodes with respect to the manufacturing process, it can be concluded that monolithic electrodes are the preferred solution for very thin electrodes (<20 µm), while sandwich electrode technology is especially suitable for thicker electrodes (40-50 µm).


Assuntos
Eletrodos Implantados , Membranas Artificiais , Desenho de Prótese , Nervo Vestibular , Animais , Estimulação Elétrica/instrumentação , Estimulação Elétrica/métodos , Cobaias , Humanos , Microeletrodos , Resinas Sintéticas/química
20.
Atten Percept Psychophys ; 86(4): 1417-1434, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38658516

RESUMO

Vestibular perceptual thresholds quantify sensory noise associated with reliable perception of small self-motions. Previous studies have identified substantial variation between even healthy individuals' thresholds. However, it remains unclear if or how an individual's vestibular threshold varies over repeated measures across various time scales (repeated measurements on the same day, across days, weeks, or months). Here, we assessed yaw rotation and roll tilt thresholds in four individuals and compared this intra-individual variability to inter-individual variability of thresholds measured across a large age-matched cohort each measured only once. For analysis, we performed simulations of threshold measurements where there was no underlying variability (or it was manipulated) to compare to that observed empirically. We found remarkable consistency in vestibular thresholds within individuals, for both yaw rotation and roll tilt; this contrasts with substantial inter-individual differences. Thus, we conclude that vestibular perceptual thresholds are an innate characteristic, which validates pooling measures across sessions and potentially serves as a stable clinical diagnostic and/or biomarker.


Assuntos
Limiar Sensorial , Vestíbulo do Labirinto , Humanos , Limiar Sensorial/fisiologia , Masculino , Feminino , Adulto , Vestíbulo do Labirinto/fisiologia , Percepção de Movimento/fisiologia , Rotação , Individualidade , Adulto Jovem , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA