RESUMO
The scent of musk plays a unique role in the history of perfumery. Musk odorants comprise 6 diverse chemical classes and perception differences in strength and quality among human panelists have long puzzled the field of olfaction research. Three odorant receptors (OR) had recently been described for musk odorants: OR5AN1, OR1N2, and OR5A2. High functional expression of the difficult-to-express human OR5A2 was achieved by a modification of the C-terminal domain and the link between sensory perception and receptor activation for the trilogy of these receptors and their key genetic variants was investigated: All 3 receptors detect only musky smelling compounds among 440 commercial fragrance compounds. OR5A2 is the key receptor for the classes of polycyclic and linear musks and for most macrocylic lactones. A single P172L substitution reduces the sensitivity of OR5A2 by around 50-fold. In parallel, human panelists homozygous for this mutation have around 40-60-fold higher sensory detection threshold for selective OR5A2 ligands. For macrocyclic lactones, OR5A2 could further be proven as the key OR by a strong correlation between in vitro activation and the sensory detection threshold in vivo. OR5AN1 is the dominant receptor for the perception of macrocyclic ketones such as muscone and some nitromusks, as panelists with a mutant OR5A2 are still equally sensitive to these ligands. Finally, OR1N2 appears to be an additional receptor involved in the perception of the natural (E)-ambrettolide. This study for the first time links OR activation to sensory perception and genetic polymorphisms for this unique class of odorants.
Assuntos
Ácidos Graxos Monoinsaturados , Percepção Olfatória , Receptores Odorantes , Olfato , Humanos , Genótipo , Lactonas , Odorantes , Receptores Odorantes/metabolismo , Olfato/genéticaRESUMO
Protein kinases, one of the largest enzyme superfamilies, regulate many physiological and pathological processes. They are drug targets for multiple human diseases, including various cancer types. Probes for the photoaffinity labelling of kinases are important research tools for the study of members of this enzyme superfamily. In this review, we discuss the design principles of these probes, which are mainly derived from inhibitors targeting the ATP pocket. Overall, insights from crystal structures guide the placement of photoreactive groups and detection tags. This has resulted in a wide variety of probes, of which we provide a comprehensive overview. We also discuss several areas of application of these probes, including the identification of targets and off-targets of kinase inhibitors, mapping of their binding sites, the development of inhibitor screening assays, the imaging of kinases, and identification of protein binding partners.