Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Proc Natl Acad Sci U S A ; 107(8): 3424-9, 2010 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-20142509

RESUMO

Onchocerciasis, or river blindness, is a neglected tropical disease caused by the filarial nematode Onchocerca volvulus that affects more than 37 million people, mainly in third world countries. Currently, the only approved drug available for mass treatment is ivermectin, however, drug resistance is beginning to emerge, thus, new therapeutic targets and agents are desperately needed to treat and cure this devastating disease. Chitin metabolism plays a central role in invertebrate biology due to the critical structural function of chitin for the organism. Taken together with its absence in mammals, targeting chitin is an appealing therapeutic avenue. Importantly, the chitinase OvCHT1 from O. volvulus was recently discovered, however, its exact role in the worm's metabolism remains unknown. A screening effort against OvCHT1 was conducted using the Johns Hopkins Clinical Compound Library that contains over 1,500 existing drugs. Closantel, a veterinary anthelmintic with known proton ionophore activities, was identified as a potent and specific inhibitor of filarial chitinases, an activity not previously reported for this compound. Notably, closantel was found also to completely inhibit molting of O. volvulus infective L3 stage larvae. Closantel appears to target two important biochemical processes essential to filarial parasites. To begin to unravel closantel's effects, a retro-fragment-based study was used to define structural elements critical for closantel's chitinase inhibitor function. As resources towards the development of new agents that target neglected tropical diseases are scant, the finding of an existing drug with impact against O. volvulus provides promise in the hunt for new therapies against river blindness.


Assuntos
Anti-Helmínticos/farmacologia , Quitina/antagonistas & inibidores , Quitinases/antagonistas & inibidores , Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Onchocerca/efeitos dos fármacos , Oncocercose/tratamento farmacológico , Salicilanilidas/farmacologia , Animais , Anti-Helmínticos/química , Anti-Helmínticos/isolamento & purificação , Quitina/metabolismo , Inibidores Enzimáticos/química , Inibidores Enzimáticos/isolamento & purificação , Humanos , Concentração Inibidora 50 , Muda/efeitos dos fármacos , Onchocerca/enzimologia , Onchocerca/crescimento & desenvolvimento , Salicilanilidas/química , Salicilanilidas/isolamento & purificação , Bibliotecas de Moléculas Pequenas
2.
Sci Rep ; 13(1): 7951, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37193733

RESUMO

N-linked glycosylation is a critical post translational modification of eukaryotic proteins. N-linked glycans are present on surface and secreted filarial proteins that play a role in host parasite interactions. Examples of glycosylated Brugia malayi proteins have been previously identified but there has not been a systematic study of the N-linked glycoproteome of this or any other filarial parasite. In this study, we applied an enhanced N-glyco FASP protocol using an engineered carbohydrate-binding protein, Fbs1, to enrich N-glycosylated peptides for analysis by LC-MS/MS. We then mapped the N-glycosites on proteins from three host stages of the parasite: adult female, adult male and microfilariae. Fbs1 enrichment of N-glycosylated peptides enhanced the identification of N-glycosites. Our data identified 582 N-linked glycoproteins with 1273 N-glycosites. Gene ontology and cell localization prediction of the identified N-glycoproteins indicated that they were mostly membrane and extracellular proteins. Comparing results from adult female worms, adult male worms, and microfilariae, we find variability in N-glycosylation at the protein level as well as at the individual N-glycosite level. These variations are highlighted in cuticle N-glycoproteins and adult worm restricted N-glycoproteins as examples of proteins at the host parasite interface that are well positioned as potential therapeutic targets or biomarkers.


Assuntos
Brugia Malayi , Animais , Humanos , Masculino , Feminino , Brugia Malayi/genética , Cromatografia Líquida , Espectrometria de Massas em Tandem , Peptídeos/metabolismo , Microfilárias/genética , Microfilárias/metabolismo , Glicoproteínas/genética , Glicoproteínas/metabolismo , Proteoma/metabolismo
3.
PLoS One ; 14(9): e0216849, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31513600

RESUMO

Further characterization of essential systems in the parasitic filarial nematode Brugia malayi is needed to better understand its biology, its interaction with its hosts, and to identify critical components that can be exploited to develop novel treatments. The production of glycophosphatidylinositol-anchored proteins (GPI-APs) is essential for eukaryotic cellular and physiological function. In addition, GPI-APs perform many important roles for cells. In this study, we characterized the B. malayi GPI-anchored proteome using both computational and experimental approaches. We used bioinformatic strategies to show the presence or absence of B. malayi GPI-AP biosynthetic pathway genes and to compile a putative B. malayi GPI-AP proteome using available prediction programs. We verified these in silico analyses using proteomics to identify GPI-AP candidates prepared from the surface of intact worms and from membrane enriched extracts. Our study represents the first description of the GPI-anchored proteome in B. malayi and lays the groundwork for further exploration of this essential protein modification as a target for novel anthelmintic therapeutic strategies.


Assuntos
Brugia Malayi/metabolismo , Proteínas Ligadas por GPI/metabolismo , Proteínas de Helminto/metabolismo , Proteoma , Proteômica , Animais , Vias Biossintéticas , Brugia Malayi/genética , Cromatografia Líquida , Filariose/parasitologia , Humanos , Biossíntese de Proteínas , Proteômica/métodos , Espectrometria de Massas em Tandem
4.
Genome Announc ; 6(6)2018 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-29439055

RESUMO

Bacillus caldolyticus NEB414 is the original source strain for the restriction enzyme BclI. Its complete sequence and full methylome were determined using single-molecule real-time sequencing.

5.
Structure ; 13(12): 1837-47, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16338412

RESUMO

Protection from DNA invasion is afforded by restriction-modification systems in many bacteria. The efficiency of protection depends crucially on the relative expression levels of restriction versus methytransferase genes. This regulation is provided by a controller protein, named C protein. Studies of the Bcll system in E. coli suggest that C.Bcll functions as a negative regulator for M.Bcll expression, implying that it plays a role in defense against foreign DNA during virus infection. C.Bcll binds (Kd = 14.3 nM) to a 2-fold symmetric C box DNA sequence that overlaps with the putative -35 promoter region upstream of the bcllM and bcllC genes. The C.Bcll fold comprises five alpha helices: two helices form a helix-turn-helix motif, and the remaining three helices form the extensive dimer interface. The C.Bcll-DNA model proposed suggests that DNA bending might play an important role in gene regulation, and that Glu27 and Asp31 in C.Bcll might function critically in the regulation.


Assuntos
Proteínas de Bactérias/química , Enzimas de Restrição-Modificação do DNA/genética , Fatores de Transcrição/química , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Sítios de Ligação , Cristalografia , Dimerização , Escherichia coli/genética , Regulação da Expressão Gênica , Sequências Hélice-Volta-Hélice , Dados de Sequência Molecular , Conformação Proteica , Fatores de Transcrição/genética
6.
Biochim Biophys Acta ; 1621(1): 31-40, 2003 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-12667608

RESUMO

Site-directed mutagenesis was carried out to investigate the roles of a number of highly conserved residues of the chitin-binding domain (ChBD) of Bacillus circulans chitinase A1 (ChiA1) in the binding of chitin. Analysis of single alanine replacement mutants showed that mutation of an exposed tryptophan residue (Trp(687)) impaired the binding to chitin, while mutation of other highly conserved residues, most carrying aromatic or hydrophobic side chains, did not significantly affect the binding activity. Interestingly, replacement of Trp(687) with phenylalanine significantly reduced chitin-binding activity at lower salt concentrations (0-1 M NaCl) but allowed strong binding to chitin at 2 M NaCl. Since Trp(687) is conserved among the ChBDs belonging to the bacterial ChiA1 subfamily, the data presented suggest a general mechanism in which this exposed tryptophan, which is located in the cleft formed between two beta-sheets as revealed by the solution structure [J. Biol. Chem. 275 (2000) 13654], makes a major contribution to ligand binding presumably through hydrophobic interactions. Furthermore, modulation of the chitin-binding activity by the conserved amino acid replacement (W687F) and a shift in the ionic strength of buffer has led to the development of an elutable affinity tag for single column purification of recombinant proteins.


Assuntos
Bacillus/enzimologia , Quitina/metabolismo , Quitinases/metabolismo , Triptofano/metabolismo , Alanina/química , Sequência de Aminoácidos , Quitina/química , Quitinases/química , Quitinases/genética , Eletroforese em Gel de Poliacrilamida , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Concentração Osmolar , Fenilalanina/química , Plasmídeos , Ligação Proteica , Estrutura Terciária de Proteína/genética , Proteínas Recombinantes de Fusão/análise , Alinhamento de Sequência , Triptofano/análise , Triptofano/química
7.
Proc Natl Acad Sci U S A ; 100(8): 4510-5, 2003 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-12671070

RESUMO

Inteins are intervening protein sequences that undergo self-excision from a precursor protein with concomitant joining of the flanking sequences. Here, we demonstrate intein trans-splicing in Nicotiana tabacum chloroplasts by using the naturally split Ssp DnaE intein. Trans-splicing occurred whether both intein fragments were encoded in the chloroplast or were separated into the chloroplast and nuclear genomes. A biolistic approach was used to integrate two fusion genes, one encoding aminoglycoside-3-adenyltransferase (aadA) and the first 123 aa of the Ssp DnaE intein (In) and the other encoding 36 C-terminal amino acid residues of the Ssp DnaE intein (Ic) and soluble modified green fluorescent protein (smGFP) into N. tabacum plastids. Expression of these gene fragments in the chloroplast resulted in ligated aadA-smGFP due to In-Ic-mediated trans-splicing. Furthermore, an N-terminal portion of the herbicide resistance gene 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) containing a chloroplast localization signal fused to In (EPSPSn-In) was integrated into the nuclear DNA of N. tabacum by using Agrobacterium tumefaciens-mediated transformation. The remaining EPSPS gene fragment (EPSPSc) fused to Ic (Ic-EPSPSc) was integrated into the chloroplast genome by homologous recombination. Western blot analysis of cell extracts from these plants showed a full-length EPSPS, demonstrating that the EPSPSn-In gene product migrated to the chloroplast and underwent trans-splicing. Furthermore, these transgenic plants displayed improved resistance to the herbicide N-(phosphonomethyl)glycine (glyphosate) when compared with wild-type N. tabacum.


Assuntos
Cloroplastos/metabolismo , Glicina/análogos & derivados , Herbicidas/farmacologia , Nicotiana/genética , Nicotiana/metabolismo , Processamento de Proteína , 3-Fosfoshikimato 1-Carboxiviniltransferase , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo , Resistência a Medicamentos/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Genes de Plantas , Glicina/farmacologia , Proteínas de Fluorescência Verde , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Plantas Geneticamente Modificadas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Nicotiana/efeitos dos fármacos , Glifosato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA