Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(2): 3070-3087, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35941506

RESUMO

Two carbon dots (CD) with diameters of 4.9 ± 1.5 and 4.1 ± 1.2 nm were successfully synthesized through an acid ablation route with HNO3 or H2SO4, respectively, using Ilex paraguariensis as raw material. The CD were used to produce magnetite-containing nanocomposites through two different routes: hydrothermal and in situ. A thorough characterization of the particles by transmission electron microscopy (TEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), dynamic light scattering (DLS), Fourier transform infrared (FTIR), and X-ray photoelectron spectroscopy (XPS) indicates that all nanomaterials have spherical-like morphology with a core-shell structure. The composition of this structure depends on the route used: with the hydrothermal route, the shell is composed of the CD, but with the in situ process, the CD act as nucleation centers, and so the iron oxide domains are in the shell. Regarding the photocatalytic mechanism for the degradation of methyl orange, the interaction between the CD and the magnetite plays an important role in the photo-Fenton reaction at pH 6.2, in which ligand-to-metal charge transfer processes (LTMCT) allow Fe2+ regeneration. All materials (100 ppm) showed catalytic activity in the elimination of methyl orange (8.5 ppm), achieving discoloration of up to 98% under visible irradiation over 400 nm in 7 h. This opens very interesting possibilities for the use of agro-industrial residues for sustainable synthesis of catalytic nanomaterials, and the role of the interaction of iron-based catalysts with organic matter in heterogeneous Fenton-based processes.


Assuntos
Ilex paraguariensis , Nanocompostos , Óxido Ferroso-Férrico , Carbono/química , Águas Residuárias , Nanocompostos/química , Catálise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA