Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chemistry ; 20(8): 2311-7, 2014 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-24458729

RESUMO

Small-molecule drug discovery requires reliable synthetic methods for attaching amino compounds to heterocyclic scaffolds. Trifluoroacetic acid-2,2,2-trifluoroethanol (TFA-TFE) is as an effective combination for achieving SN Ar reactions between anilines and heterocycles (e.g., purines and pyrimidines) substituted with a leaving group (fluoro-, chloro-, bromo- or alkylsulfonyl). This method provides a variety of compounds containing a "kinase-privileged fragment" associated with potent inhibition of kinases. TFE is an advantageous solvent because of its low nucleophilicity, ease of removal and ability to solubilise polar substrates. Furthermore, TFE may assist the breakdown of the Meisenheimer-Jackson intermediate by solvating the leaving group. TFA is a necessary and effective acidic catalyst, which activates the heterocycle by N-protonation without deactivating the aniline by conversion into an anilinium species. The TFA-TFE methodology is compatible with a variety of functional groups and complements organometallic alternatives, which are often disadvantageous because of the expense of reagents, the frequent need to explore diverse sets of reaction conditions, and problems with product purification. In contrast, product isolation from TFA-TFE reactions is straightforward: evaporation of the reaction mixture, basification and chromatography affords analytically pure material. A total of 45 examples are described with seven discrete heterocyclic scaffolds and 2-, 3- and 4-substituted anilines giving product yields that are normally in the range 50-90 %. Reactions can be performed with either conventional heating or microwave irradiation, with the latter often giving improved yields.


Assuntos
Aminas/química , Compostos de Anilina/química , Compostos Heterocíclicos/química , Purinas/química , Pirimidinas/química , Ácido Trifluoracético/química , Trifluoretanol/química , Catálise , Micro-Ondas , Estrutura Molecular
2.
Chem Biol ; 22(9): 1159-64, 2015 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-26320860

RESUMO

Irreversible inhibitors that modify cysteine or lysine residues within a protein kinase ATP binding site offer, through their distinctive mode of action, an alternative to ATP-competitive agents. 4-((6-(Cyclohexylmethoxy)-9H-purin-2-yl)amino)benzenesulfonamide (NU6102) is a potent and selective ATP-competitive inhibitor of CDK2 in which the sulfonamide moiety is positioned close to a pair of lysine residues. Guided by the CDK2/NU6102 structure, we designed 6-(cyclohexylmethoxy)-N-(4-(vinylsulfonyl)phenyl)-9H-purin-2-amine (NU6300), which binds covalently to CDK2 as shown by a co-complex crystal structure. Acute incubation with NU6300 produced a durable inhibition of Rb phosphorylation in SKUT-1B cells, consistent with it acting as an irreversible CDK2 inhibitor. NU6300 is the first covalent CDK2 inhibitor to be described, and illustrates the potential of vinyl sulfones for the design of more potent and selective compounds.


Assuntos
Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Purinas/química , Purinas/farmacologia , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Ligação Competitiva , Cristalografia por Raios X , Quinase 2 Dependente de Ciclina/química , Quinase 2 Dependente de Ciclina/metabolismo , Desenho de Fármacos , Humanos , Modelos Moleculares , Ligação Proteica , Inibidores de Proteínas Quinases/síntese química , Purinas/síntese química , Relação Estrutura-Atividade , Sulfonas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA