Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 34(39)2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37311453

RESUMO

Palladium nanoparticles were produced by a chemical reagent-free and versatile method called spark ablation with control over particle size and density. These nanoparticles were used as catalytic seed particles for gallium phosphide nanowire growth by metalorganic vapour-phase epitaxy. Controlled growth of GaP nanowires using significantly small Pd nanoparticles between 10 and 40 nm diameter was achieved by varying several growth parameters. Low V/III ratios below 2.0 promote higher Ga incorporation into the Pd nanoparticles. Moderate growth temperatures under 600 °C avoid kinking and undesirable GaP surface growth. In addition, a second batch of palladium nanoparticles of concentration up to 1000 particlesµm-2was deposited onto the GaP nanowires. Subsequently, three-dimensional nanostructures evolved, with branches growing along the surface of the GaP nanowires. The GaP nanowires revealed a zinc blende structure with multiple twinning and a PdGa phase at the tip of the nanowires and branches.

2.
J Am Chem Soc ; 144(1): 248-258, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34949090

RESUMO

Earth-abundant transition metal phosphides are promising materials for energy-related applications. Specifically, copper(I) phosphide is such a material and shows excellent photocatalytic activity. Currently, there are substantial research efforts to synthesize well-defined metal-semiconductor nanoparticle heterostructures to enhance the photocatalytic performance by an efficient separation of charge carriers. The involved crystal facets and heterointerfaces have a major impact on the efficiency of a heterostructured photocatalyst, which points out the importance of synthesizing potential photocatalysts in a controlled manner and characterizing their structural and morphological properties in detail. In this study, we investigated the interface dynamics occurring around the synthesis of Ag-Cu3P nanoparticle heterostructures by a chemical reaction between Ag-Cu nanoparticle heterostructures and phosphine in an environmental transmission electron microscope. The major product of the Cu-Cu3P phase transformation using Ag-Cu nanoparticle heterostructures with a defined interface as a template preserved the initially present Ag{111} facet of the heterointerface. After the complete transformation, corner truncation of the faceted Cu3P phase led to a physical transformation of the nanoparticle heterostructure. In some cases, the structural rearrangement toward an energetically more favorable heterointerface has been observed and analyzed in detail at the atomic level. The herein-reported results will help better understand dynamic processes in Ag-Cu3P nanoparticle heterostructures and enable facet-engineered surface and heterointerface design to tailor their physical properties.

3.
Langmuir ; 37(3): 1089-1101, 2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33417766

RESUMO

Boiling heat transfer intensification is of significant relevance to energy conversion and various cooling processes. This study aimed to enhance the saturated pool boiling of FC-72 (a dielectric liquid) by surface modifications and explore mechanisms of the enhancement. Specifically, circular and square micro pin fins were fabricated on silicon surfaces by dry etching and then copper nanoparticles were deposited on the micro-pin-fin surfaces by electrostatic deposition. Experimental results indicated that compared with a smooth surface, the micro pin fins increased the heat transfer coefficient and the critical heat flux by more than 200 and 65-83%, respectively, which were further enhanced by the nanoparticles up to 24% and more than 20%, respectively. Correspondingly, the enhancement mechanism was carefully explored by high-speed bubble visualizations, surface wickability measurements, and model analysis. It was quantitatively found that small bubble departure diameters with high bubble departure frequencies promoted high heat transfer coefficients. The wickability, which characterizes the ability of a liquid to rewet a surface, played an important role in determining the critical heat flux, but further analyses indicated that evaporation beneath bubbles was also essential and competition between the wicking and the evaporation finally triggered the critical heat flux.

4.
Nanotechnology ; 32(19): 195603, 2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-33530061

RESUMO

Directed self-assembly of nanoparticles (NPs) is a promising strategy for bottom-up fabrication of nanostructured materials with tailored composition and morphology. Here, we present a simple and highly flexible method where charged magnetic aerosolized (i.e. suspended in a gas) NPs with tunable size and composition are self-assembled into nanostructures using combined electric and magnetic fields. Size-selected Co, Ni, and Fe NPs have been generated by spark ablation, and self-assembled into different structures, ranging from one-dimensional nanochains to macroscopic three-dimensional networks. By comparing the resulting structures with simulations, we can conclude that the magnetization of the NPs governs the self-assembly through interparticle magnetic dipole-dipole interactions. We also show how the orientation of the external magnetic field directs the self-assembly into differently aligned nano- and macroscopic structures. These results demonstrate how aerosol deposition in a combined electric and magnetic field can be used for directed bottom-up self-assembly of nanostructures with specialized composition and morphology.

5.
J Am Chem Soc ; 141(8): 3532-3540, 2019 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-30685969

RESUMO

Lead halide perovskites (LHPs) nanocrystals (NCs), owing to their outstanding photophysical properties, have recently emerged as a promising material not only for solar cells but also for lighting and display applications. The photophysical properties of these materials can be further improved by chemical engineering such as cation exchange. Hot carrier (HC) cooling, as one of the key photophysical processes in LHPs, can strongly influence performance of LHPs NCs based devices. Here, we study HC relaxation dynamics in LHP NCs with cesium (Cs), methylammonium (MA, CH3NH3+), and formamidinium (FA, CH(NH2)2+) cations by using femtosecond transient absorption spectroscopy. The LHP NCs show excitation intensity and excitation energy-dependent HC cooling. We investigate the details of HC cooling in CsPbBr3, MAPbBr3, and FAPbBr3 at three different excitation energies with low excitation intensity. It takes longer time for the HCs at high energy to relax (cool) to the band edge, compared to the HCs generated by low excitation energy. At the same excitation energy (350 nm, 3.54 eV), all the three LHP NCs show fast HC relaxation (<0.4 ps) with the cooling time and rate in the following order: CsPbBr3 (0.39 ps, 2.9 meV/fs) > MAPbBr3 (0.27 ps, 4.6 meV/fs) > FAPbBr3 (0.21 ps, 5.8 meV/fs). The cation dependence can be explained by stronger interaction between the organic cations with the Pb-Br frameworks compared to the Cs. The revealed cation-dependent HC relaxation process is important for providing cation engineering strategies for developing high performance LHP devices.

6.
Nanotechnology ; 30(5): 054005, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30511656

RESUMO

Controllable particle assisted growth (PAG) of III-V nanowires is today almost exclusively done with Au, Ga or In nanoparticles, whereas other metals often yield nanowires with uncontrolled growth directions. To improve the control of the initial growth direction in PAG, independent of choice of metal, we propose to initiate nanowire growth from a group-III-rich foreign metal particle. For III-V nanowire growth, the group III concentration of the particle can be made to increase or decrease with the relative supply of group III and group V material, which can be used to promote the liquid phase that is necessary for vapor-liquid-solid growth. In this paper, 30 nm Pd nanoparticles are used to develop growth conditions for In-rich PAG of InAs nanowires. The particle size evolution for different growth times and V/III ratios is correlated with changes in nanowire density and morphology. In addition, we demonstrate In-rich Co, Pd, Pt and Rh nanoparticles and optimized In-rich PAG from Au and Pd seeds. The Au and Pd seeded nanowires are remarkably similar and by tuning the particle composition we trigger a morphological change. The vertical nanowire morphology is associated with In-rich nanoparticles that contain a liquid phase. The curly nanowire morphology, with random growth directions have an In concentration less than or equal to that of the most In rich compound of the seed metal-In system.

7.
Nanotechnology ; 30(50): 505703, 2019 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-31480023

RESUMO

InAs x P1-x nanowires are promising building blocks for future optoelectronic devices and nanoelectronics. Their structure may vary from nanowire to nanowire, which may influence their average optoelectronic properties. Therefore, it is highly important for their applications to know the average properties of an ensemble of the nanowires. Structural properties of the InAs x P1-x -InP core-shell nanowires were investigated using the coplanar x-ray diffraction performed at a synchrotron facility. Studies of series of symmetric and asymmetric x-ray Bragg reflections allowed us to determine the 26% ± 3% of As chemical composition in the InAs x P1-x core, core-shell relaxation, and the average tilt of the nanowires with respect to the substrate normal. Based on the x-ray diffraction, scanning, and transmission electron microscopy measurements, a model of the core-shell relaxation was proposed. Partial relaxation of the core was attributed to misfit dislocations formed at the core-shell interface and their linear density was estimated to be 3.3 ± 0.3 × 104 cm-1.

8.
Nano Lett ; 18(1): 144-151, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29257691

RESUMO

Semiconductors are essential for modern electronic and optoelectronic devices. To further advance the functionality of such devices, the ability to fabricate increasingly complex semiconductor nanostructures is of utmost importance. Nanowires offer excellent opportunities for new device concepts; heterostructures have been grown in either the radial or axial direction of the core nanowire but never along both directions at the same time. This is a consequence of the common use of a foreign metal seed particle with fixed size for nanowire heterostructure growth. In this work, we present for the first time a growth method to control heterostructure growth in both the axial and the radial directions simultaneously while maintaining an untapered self-seeded growth. This is demonstrated for the InAs/InAs1-xPx material system. We show how the dimensions and composition of such axio-radial nanowire heterostructures can be designed including the formation of a "pseudo-superlattice" consisting of five separate InAs1-xPx segments with varying length. The growth of axio-radial nanowire heterostructures offers an exciting platform for novel nanowire structures applicable for fundamental studies as well as nanowire devices. The growth concept for axio-radial nanowire heterostructures is expected to be fully compatible with Si substrates.

9.
Nanotechnology ; 27(45): 455704, 2016 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-27713183

RESUMO

In this paper we have investigated the dynamics of photo-generated charge carriers in a series of aerotaxy-grown GaAs nanowires (NWs) with different levels of Zn doping. Time-resolved photo-induced luminescence and transient absorption have been employed to investigate radiative (band edge transition) and non-radiative charge recombination processes, respectively. We find that the photo-luminescence (PL) lifetime of intrinsic GaAs NWs is significantly increased after growing an AlGaAs shell over them, indicating that an AlGaAs shell can effectively passivate the surface of aerotaxy-grown GaAs NWs. We observe that PL decay time as well as PL intensity decrease with increasing Zn doping, which can be attributed to thermally activated electron trapping with the trap density increased due to the Zn doping level.

10.
Phys Chem Chem Phys ; 18(22): 14933-40, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27189431

RESUMO

After having emerged as primary contenders in the race for highly efficient optoelectronics materials, organolead halide perovskites (OHLP) are now being investigated in the nanoscale regime as promising building blocks with unique properties. For example, unlike their bulk counterpart, quantum dots of OHLP are brightly luminescent, owing to large exciton binding energies that cannot be rationalized solely on the basis of quantum confinement. Here, we establish the direct correlation between the structure and the electronic band-edge properties of CH3NH3PbBr3 nanoparticles. Complementary structural and spectroscopic measurements probing long-range and local order reveal that lattice strain influences the nature of the valence band and modifies the subtle stereochemical activity of the Pb(2+) lone-pair. More generally, this work demonstrates that the stereochemical activity of the lone-pair at the metal site is a specific physicochemical parameter coupled to composition, size and strain, which can be employed to engineer novel functionalities in OHLP nanomaterials.

11.
Ann Occup Hyg ; 60(4): 493-512, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26748380

RESUMO

INTRODUCTION: An increased production and use of carbon nanotubes (CNTs) is occurring worldwide. In parallel, a growing concern is emerging on the adverse effects the unintentional inhalation of CNTs can have on humans. There is currently a debate regarding which exposure metrics and measurement strategies are the most relevant to investigate workplace exposures to CNTs. This study investigated workplace CNT emissions using a combination of time-integrated filter sampling for scanning electron microscopy (SEM) and direct reading aerosol instruments (DRIs). MATERIAL AND METHODS: Field measurements were performed during small-scale manufacturing of multiwalled carbon nanotubes using the arc discharge technique. Measurements with highly time- and size-resolved DRI techniques were carried out both in the emission and background (far-field) zones. Novel classifications and counting criteria were set up for the SEM method. Three classes of CNT-containing particles were defined: type 1: particles with aspect ratio length:width >3:1 (fibrous particles); type 2: particles without fibre characteristics but with high CNT content; and type 3: particles with visible embedded CNTs. RESULTS: Offline sampling using SEM showed emissions of CNT-containing particles in 5 out of 11 work tasks. The particles were classified into the three classes, of which type 1, fibrous CNT particles contributed 37%. The concentration of all CNT-containing particles and the occurrence of the particle classes varied strongly between work tasks. Based on the emission measurements, it was assessed that more than 85% of the exposure originated from open handling of CNT powder during the Sieving, mechanical work-up, and packaging work task. The DRI measurements provided complementary information, which combined with SEM provided information on: (i) the background adjusted emission concentration from each work task in different particle size ranges, (ii) identification of the key procedures in each work task that lead to emission peaks, (iii) identification of emission events that affect the background, thereby leading to far-field exposure risks for workers other than the operator of the work task, and (iv) the fraction of particles emitted from each source that contains CNTs. CONCLUSIONS: There is an urgent need for a standardized/harmonized method for electron microscopy (EM) analysis of CNTs. The SEM method developed in this study can form the basis for such a harmonized protocol for the counting of CNTs. The size-resolved DRI techniques are commonly not specific enough to selective analysis of CNT-containing particles and thus cannot yet replace offline time-integrated filter sampling followed by SEM. A combination of EM and DRI techniques offers the most complete characterization of workplace emissions of CNTs today.


Assuntos
Poluentes Ocupacionais do Ar/análise , Monitoramento Ambiental/métodos , Microscopia Eletrônica de Varredura , Nanotubos de Carbono/análise , Exposição Ocupacional/análise , Aerossóis/análise , Humanos , Exposição por Inalação/análise , Microscopia Eletrônica de Varredura/métodos , Tamanho da Partícula
12.
Ann Occup Hyg ; 59(7): 836-52, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26122528

RESUMO

BACKGROUND: The industrial use of novel-manufactured nanomaterials such as carbon nanotubes and carbon nanodiscs is increasing globally. Occupational exposure can occur during production, downstream use, and disposal. The health effects of many nanomaterials are not yet fully characterized and to handle nano-objects, their aggregates and agglomerates >100nm (NOAA), a high degree of control measures and personal protective equipment are required. The emission of airborne NOAA during production and handling can contaminate workplace surfaces with dust, which can be resuspended resulting in secondary inhalation exposures and dermal exposures. This study surveys the presence of carbon-based nanomaterials, such as multi-walled carbon nanotubes (MWCNTs) and carbon nanodiscs, as surface contamination at a small-scale producer using a novel tape sampling method. METHODS: Eighteen different surfaces at a small-scale producer were sampled with an adhesive tape sampling method. The surfaces selected were associated with the production and handling of MWCNT powder in the near-field zone. Surfaces in the far-field zone were also sampled. In addition, tape stripping of the skin was performed on one worker. The tape samples were analysed with scanning electron microscopy to detect the carbon-based NOAA. Air sampling with a personal impactor was also performed on a worker who was producing MWCNTs the same day as the tape samples were collected. RESULTS: MWCNTs were detected in 50% of the collected tape samples and carbon nanodiscs in 17%. MWCNTs and carbon nanodiscs were identified in all parts of the workplace, thus, increasing the risk for secondary inhalation and dermal exposure of the workers. Both airborne MWCNTs and carbon nanodiscs were detected in the personal impactor samples. The tape-strip samples from the worker showed no presence of carbon-containing nanoparticles. CONCLUSIONS: Tape sampling is a functional method for detecting surface contamination of carbon-based NOAA and for exposure control during production at potentially any workplace that produces or handles such manufactured nanomaterials. With the tape method, it is possible to monitor if a potential for secondary inhalation exposure or dermal exposure exists through resuspension of dust deposited on workplace surfaces. By means of air sampling, we could confirm that carbon nanodiscs were resuspended into the air at the workplace even though they were not handled during that particular work shift. MWCNTs were detected in the air samples, but can have been derived from either resuspension or from the work tasks with MWCNTs that were performed during the air sampling. Tape sampling is a complementary method to air sampling and together these two methods provide a better view of the hygienic situation in workplaces where NOAA can be emitted into work environments.


Assuntos
Carbono/análise , Monitoramento Ambiental/instrumentação , Nanotubos de Carbono/análise , Exposição Ocupacional/análise , Local de Trabalho , Poluentes Ocupacionais do Ar/análise , Poeira/análise , Humanos , Indústrias , Exposição por Inalação/análise , Microscopia Eletrônica de Varredura , Tamanho da Partícula
13.
Environ Sci Technol ; 48(11): 6300-8, 2014 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-24798545

RESUMO

In urban environments, airborne particles are continuously emitted, followed by atmospheric aging. Also, particles emitted elsewhere, transported by winds, contribute to the urban aerosol. We studied the effective density (mass-mobility relationship) and mixing state with respect to the density of particles in central Copenhagen, in wintertime. The results are related to particle origin, morphology, and aging. Using a differential mobility analyzer-aerosol particle mass analyzer (DMA-APM), we determined that particles in the diameter range of 50-400 nm were of two groups: porous soot aggregates and more dense particles. Both groups were present at each size in varying proportions. Two types of temporal variability in the relative number fraction of the two groups were found: soot correlated with intense traffic in a diel pattern and dense particles increased during episodes with long-range transport from polluted continental areas. The effective density of each group was relatively stable over time, especially of the soot aggregates, which had effective densities similar to those observed in laboratory studies of fresh diesel exhaust emissions. When heated to 300 °C, the soot aggregate volatile mass fraction was ∼10%. For the dense particles, the volatile mass fraction varied from ∼80% to nearly 100%.


Assuntos
Aerossóis/química , Cidades , Material Particulado/química , Emissões de Veículos/análise , Aerossóis/análise , Dinamarca , Monitoramento Ambiental/métodos , Tamanho da Partícula , Material Particulado/análise , Fatores de Tempo
14.
Ann Occup Hyg ; 58(3): 355-79, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24389082

RESUMO

BACKGROUND: The production and use of carbon nanotubes (CNTs) is rapidly growing. With increased production, there is potential that the number of occupational exposed workers will rapidly increase. Toxicological studies on rats have shown effects in the lungs, e.g., inflammation, granuloma formation, and fibrosis after repeated inhalation exposure to some forms of multi-walled CNTs (MWCNTs). Still, when it comes to health effects, it is unknown which dose metric is most relevant. Limited exposure data for CNTs exist today and no legally enforced occupational exposure limits are yet established. The aim of this work was to quantify the occupational exposures and emissions during arc discharge production, purification, and functionalization of MWCNTs. The CNT material handled typically had a mean length <5 µm. Since most of the collected airborne CNTs did not fulfil the World Health Organization fibre dimensions (79% of the counted CNT-containing particles) and since no microscopy-based method for counting of CNTs exists, we decided to count all particle that contained CNTs. To investigate correlations between the used exposure metrics, Pearson correlation coefficient was used. METHODS: Exposure measurements were performed at a small-scale producer of MWCNTs and respirable fractions of dust concentrations, elemental carbon (EC) concentrations, and number concentrations of CNT-containing particles were measured in the workers' breathing zones with filter-based methods during work. Additionally, emission measurements near the source were carried out during different work tasks. Respirable dust was gravimetrically determined; EC was analysed with thermal-optical analysis and the number of CNT-containing particles was analysed with scanning electron microscopy. RESULTS: For the personal exposure measurements, respirable dust ranged between <73 and 93 µg m(-3), EC ranged between <0.08 and 7.4 µg C m(-3), and number concentration of CNT-containing particles ranged between 0.04 and 2.0 cm(-3). For the emission measurements, respirable dust ranged between <2800 and 6800 µg m(-3), EC ranged between 0.05 and 550 µg C m(-3), and number concentration of CNT-containing particles ranged between <0.20 and 11cm(-3). CONCLUSIONS: The highest exposure to CNTs occurred during production of CNTs. The highest emitted number concentration of CNT-containing particles occurred in the sieving, mechanical work-up, pouring, weighing, and packaging of CNT powder during the production stage. To be able to quantify exposures and emissions of CNTs, a selective and sensitive method is needed. Limitations with measuring EC and respirable dust are that these exposure metrics do not measure CNTs specifically. Only filter-based methods with electron microscopy analysis are, to date, selective and sensitive enough. This study showed that counting of CNT-containing particles is the method that fulfils those criteria and is therefore the method recommended for future quantification of CNT exposures. However, CNTs could be highly toxic not only because of their length but also because they could contain, for example transition metals and polycyclic aromatic hydrocarbons, or have surface defects. Lack of standardized counting criteria for CNTs to be applied at the electron microscopy analysis is a limiting factor, which makes it difficult to compare exposure data from different studies.


Assuntos
Carbono/análise , Monitoramento Ambiental/instrumentação , Nanotubos de Carbono/análise , Nanotubos de Carbono/toxicidade , Poluentes Ocupacionais do Ar/análise , Poluentes Ocupacionais do Ar/toxicidade , Poeira/análise , Monitoramento Ambiental/métodos , Filtração/métodos , Humanos , Exposição por Inalação/análise , Exposição por Inalação/prevenção & controle , Limite de Detecção , Pulmão/efeitos dos fármacos , Microscopia Eletrônica de Varredura , Exposição Ocupacional/análise , Tamanho da Partícula , Dispositivos de Proteção Respiratória/normas
15.
Nanoscale Adv ; 5(24): 6880-6886, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38059023

RESUMO

Nanoparticles (NPs) mixed at the atomic scale have been synthesized by atmospheric-pressure spark ablation using pairs of Pd and Hf electrodes. Gravimetric analysis of the electrodes showed that the fraction of each material in the resulting mixed NPs can be varied from ca. 15-85 at% to 85-15 at% by employing different combinations of electrode polarities and thicknesses. These results were also qualitatively corroborated by microscopy and elemental analysis of the produced NPs. When using pairs of electrodes having the same diameter, the material from the one at negative polarity was represented at a substantially higher fraction in the mixed NPs regardless of whether a pair of thin or thick electrodes were employed. This can be attributed to the higher ablation rate of the electrodes at the negative polarity, as already known from earlier experiments. When using electrodes of different diameters, the fraction of the element from the thinner electrode was always higher. This is because thinner electrodes are ablated more effectively due to, at least in part, the increased importance of the associated heat losses compared to its thicker counterpart. In those cases, the polarity of the electrodes had a significantly smaller effect. Overall, our results demonstrate, for the first time, that spark ablation can be used to control atomic scale mixing and thus produce alloyed NPs with compositions that can be tuned to a good extent by simply using different combinations of electrode diameters and polarities. This expands the capabilities of the technique for producing mixed nanoparticle building blocks of well-defined composition that are highly desired for a wide range of applications.

16.
Materials (Basel) ; 16(3)2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36770120

RESUMO

Spark ablation is an advantageous method for the generation of metallic nanoparticles with defined particle sizes and compositions. The reaction of the metal particles with the carrier gas during the synthesis and, therefore, the incorporation of those light elements into structural voids or even compound formation was confirmed for hydrides and oxides but has only been suspected to occur for nitrides. In this study, dispersed nanoparticles of Mo3Ni2N and Mo with Janus morphology, and defined particle sizes were obtained by spark discharge generation as a result of carrier gas ionization and characterized using transmission electron microscopy and powder X-ray diffraction. Metal nitrides possess beneficial catalytic and thermoelectric properties, as well as high hardness and wear resistance. Therefore, this method offers the possibility of controlled synthesis of materials which are interesting for numerous applications.

17.
Environ Int ; 174: 107874, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36934572

RESUMO

BACKGROUND: In the strive towards a circular economy, metal waste recycling is a growing industry. During the recycling process, particulate matter containing toxic and allergenic metals will be emitted to the air causing unintentional exposure to humans and environment. OBJECTIVE: In this study detailed characterization of particle emissions and workplace exposures were performed, covering the full size range from 10 nm to 10 µm, during recycling of three different material flows: Waste of electrical and electronic equipment (WEEE), metal scrap, and cables. METHODS: Both direct-reading instruments (minute resolution), and time-integrated filter measurements for gravimetric and chemical analysis were used. Additionally, optical sensors were applied and evaluated for long-term online monitoring of air quality in industrial settings. RESULTS: The highest concentrations, in all particle sizes, and with respect both to particle mass and number, were measured in the WEEE flow, followed by the metal scrap flow. The number fraction of nanoparticles was high for all material flows (0.66-0.86). The most abundant metals were Fe, Al, Zn, Pb and Cu. Other elements of toxicological interest were Mn, Ba and Co. SIGNIFICANCE: The large fraction of nanoparticles, and the fact that their chemical composition deviate from that of the coarse particles, raises questions that needs to be further addressed including toxicological implications, both for humans and for the environment.


Assuntos
Poluição do Ar , Metais , Humanos , Metais/análise , Material Particulado/análise , Poluição do Ar/análise , Tamanho da Partícula , Local de Trabalho , Reciclagem , Monitoramento Ambiental/métodos
18.
ACS Nano ; 17(8): 7674-7684, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37017472

RESUMO

Metal-semiconductor nanoparticle heterostructures are exciting materials for photocatalytic applications. Phase and facet engineering are critical for designing highly efficient catalysts. Therefore, understanding processes occurring during the nanostructure synthesis is crucial to gain control over properties such as the surface and interface facets' orientations, morphology, and crystal structure. However, the characterization of nanostructures after the synthesis makes clarifying their formation mechanisms nontrivial and sometimes even impossible. In this study, we used an environmental transmission electron microscope with an integrated metal-organic chemical vapor deposition system to enlighten fundamental dynamic processes during the Ag-Cu3P-GaP nanoparticle synthesis using Ag-Cu3P seed particles. Our results reveal that the GaP phase nucleated at the Cu3P surface, and growth proceeded via a topotactic reaction involving counter-diffusion of Cu+ and Ga3+ cations. After the initial GaP growth steps, the Ag and Cu3P phases formed specific interfaces with the GaP growth front. GaP growth proceeded by a similar mechanism observed for the nucleation involving the diffusion of Cu atoms through/along the Ag phase toward other regions, followed by the redeposition of Cu3P at a specific Cu3P crystal facet, not in contact with the GaP phase. The Ag phase was essential for this process by acting as a medium enabling the efficient transport of Cu atoms away from and, simultaneously, Ga atoms toward the GaP-Cu3P interface. This study shows that enlightening fundamental processes is critical for progress in synthesizing phase- and facet-engineered multicomponent nanoparticles with tailored properties for specific applications, including catalysis.

19.
Nanoscale Adv ; 5(22): 6069-6077, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37941940

RESUMO

Bimetallic nanoparticles have gained significant attention in catalysis as potential alternatives to expensive catalysts based on noble metals. In this study, we investigate the compositional tuning of Pd-Cu bimetallic nanoparticles using a physical synthesis method called spark ablation. By utilizing pure and alloyed electrodes in different configurations, we demonstrate the ability to tailor the chemical composition of nanoparticles within the range of approximately 80 : 20 at% to 40 : 60 at% (Pd : Cu), measured using X-ray fluorescence (XRF) and transmission electron microscopy energy dispersive X-ray spectroscopy (TEM-EDXS). Time-resolved XRF measurements revealed a shift in composition throughout the ablation process, potentially influenced by material transfer between electrodes. Powder X-ray diffraction confirmed the predominantly fcc phase of the nanoparticles while high-resolution TEM and scanning TEM-EDXS confirmed the mixing of Pd and Cu within individual nanoparticles. X-ray photoelectron and absorption spectroscopy were used to analyze the outermost atomic layers of the nanoparticles, which is highly important for catalytic applications. Such comprehensive analyses offer insights into the formation and structure of bimetallic nanoparticles and pave the way for the development of efficient and affordable catalysts for various applications.

20.
Nanoscale ; 15(45): 18500-18510, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37942933

RESUMO

The direct integration of 1D magnetic nanostructures into electronic circuits is crucial for realizing their great potential as components in magnetic storage, logical devices, and spintronic applications. Here, we present a novel template-free technique for producing magnetic nanochains and nanowires using directed self-assembly of gas-phase-generated metallic nanoparticles. The 1D nanostructures can be self-assembled along most substrate surfaces and can be freely suspended over micrometer distances, allowing for direct incorporation into different device architectures. The latter is demonstrated by a one-step integration of nanochains onto a pre-patterned Si chip and the fabrication of devices exhibiting magnetoresistance. Moreover, fusing the nanochains into nanowires by post-annealing significantly enhances the magnetic properties, with a 35% increase in the coercivity. Using magnetometry, X-ray microscopy, and micromagnetic simulations, we demonstrate how variations in the orientation of the magnetocrystalline anisotropy and the presence of larger multi-domain particles along the nanochains play a key role in the domain formation and magnetization reversal. Furthermore, it is shown that the increased coercivity in the nanowires can be attributed to the formation of a uniform magnetocrystalline anisotropy along the wires and the onset of exchange interactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA