Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Neurochem ; 165(3): 413-425, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36681883

RESUMO

The interest for developing antibody-driven therapeutic interventions has exponentially grown over the last few decades. Even though there have been promising leaps in the development of efficacious antibody therapies, problems revolving around production and site-directed delivery of these large macromolecules persist. This is especially pertinent when it comes to designing and producing antibodies to penetrate the blood-brain barrier (BBB) to tackle neurodegenerative diseases. One of the most effective approaches to alleviating this problem is to employ a "Trojan Horse" approach, using receptor-mediated transcytosis, such as those governed by the transferrin receptor (TfR)-mediated pathways, to deliver large protein payloads into the brain. Even though this method is effective, ideal limiting factors, related to how the antibody binds to the TfR, need to be elucidated to improve BBB penetrance. With this said, we have designed and produced a single-chain Fc antibody, conjugated to an scFv8D3 TfR binding motif, creating a single-chain monovalent BBB transporter (scFc-scFv8D3). This recombinant protein is easy to produce and purify, demonstrates monovalent binding to the TfR and is structurally stable at physiologically relevant temperatures. Using an in vitro BBB model system, we show a positive correlation between the concentration of administered antibody and transcytosis efficacy, with scFc-scFv8D3 demonstrating significantly higher transcytosis levels compared with scFv8D3-conjugated bivalent antibodies at elevated administered concentrations. Furthermore, in vivo studies recapitulate the in vitro results, with the scFc-scFv8D3 demonstrating an elevated brain uptake at higher therapeutic doses in wild-type mice, comparable with that of the scFv8D3-conjugated bivalent antibody control. In addition, the half-life of the single-chain monovalent BBB transporter is comparable with that of standard IgG antibodies, indicating that the scFc format does not exacerbate physiological degradation. Our results lead us to the conclusion that valency and affinity are important variables to consider when discerning optimal transport across the BBB using TfR-mediated transcytosis pathways. In addition, we believe the single-chain Fc antibody we have described, which can easily be manipulated to accommodate a bispecific target tactic, provides a simple and efficacious approach for delivering therapeutic payloads to the brain milieu.


Assuntos
Barreira Hematoencefálica , Encéfalo , Camundongos , Animais , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Transporte Biológico , Transcitose , Proteínas de Membrana Transportadoras/metabolismo , Imunoglobulina G
2.
Mol Pharm ; 20(3): 1564-1576, 2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36808999

RESUMO

The presence of the blood-brain barrier (BBB) creates a nigh-on impenetrable obstacle for large macromolecular therapeutics that need to be delivered to the brain milieu to treat neurological disorders. To overcome this, one of the strategies used is to bypass the barrier with what is referred to as a "Trojan Horse" strategy, where therapeutics are designed to use endogenous receptor-mediated pathways to piggyback their way through the BBB. Even though in vivo methodologies are commonly used to test the efficacy of BBB-penetrating biologics, comparable in vitro BBB models are in high demand, as they benefit from being an isolated cellular system devoid of physiological factors that can on occasion mask the processes behind BBB transport via transcytosis. We have developed an in vitro BBB model (In-Cell BBB-Trans assay) based on the murine cEND cells that help delineate the ability of modified large bivalent IgG antibodies conjugated to the transferrin receptor binder scFv8D3 to cross an endothelial monolayer grown on porous cell culture inserts (PCIs). Following the administration of bivalent antibodies into the endothelial monolayer, a highly sensitive enzyme-linked immunosorbent assay (ELISA) is used to determine the concentration in the apical (blood) and basolateral (brain) chambers of the PCI system, allowing for the evaluation of apical recycling and basolateral transcytosis, respectively. Our results show that antibodies conjugated to scFv8D3 transcytose at considerably higher levels compared to unconjugated antibodies in the In-Cell BBB-Trans assay. Interestingly, we are able to show that these results mimic in vivo brain uptake studies using identical antibodies. In addition, we are able to transversely section PCI cultured cells, allowing for the identification of receptors and proteins that are likely involved in the transcytosis of the antibodies. Furthermore, studies using the In-Cell BBB-Trans assay revealed that transcytosis of the transferrin-receptor-targeting antibodies is dependent on endocytosis. In conclusion, we have designed a simple, reproducible In-Cell BBB-Trans assay based on murine cells that can be used to rapidly determine the BBB-penetrating capabilities of transferrin-receptor-targeting antibodies. We believe that the In-Cell BBB-Trans assay can be used as a powerful, preclinical screening platform for therapeutic neurological pathologies.


Assuntos
Barreira Hematoencefálica , Intervenção Coronária Percutânea , Camundongos , Animais , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Receptores da Transferrina/metabolismo , Transcitose , Imunoglobulina G/metabolismo , Transferrinas/metabolismo
3.
BMC Nephrol ; 19(1): 377, 2018 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-30587146

RESUMO

BACKGROUND: The clinical outcome and health-related quality of life (HRQoL) of living kidney donors is mostly not detrimental, but some donors experience impairment after donation. Gender-specific effects of living kidney donors was evaluated. METHODS: Clinical outcome was assessed in living kidney donors and HRQoL was obtained by self-reporting validated test systems as the Multidimensional Fatigue Inventory (MFI-20), the Short Form 36 (SF-36), and the Patient Health Questionnaire (PHQ-9). RESULTS: Two hundred and eleven (211) living renal donors were evaluated (female 62.2%). Response rate was 80.8%. In both genders, a decrease of renal function of 26% was observed after donation. De novo antihypertensives were introduced in 28.3% of women and 36.5% of men. HRQoL was comparable in female and male donors, except for mental HRQoL, which was lower in 51- to 60-year-old female donors, compared to age-matched male donors and to the female general population. Female donors aged 40-59 years demonstrated more fatigue than the age-matched general population. A low mental HRQoL (MCS; SF-36) was associated with higher values for fatigue (General Fatigue Score; MFI-20) in both genders. Multiple regression analysis detected the General Fatigue score of the MFI-20 questionnaire and depression identified by the PHQ-9 score as independent variables predicting MCS of the SF-36 in both genders. Lower age at time of donation contributed to a lower MCS in female donors. CONCLUSIONS: Overall, HRQoL in living kidney donors exceeds that of the general population. Inferior mental health status and fatigue seem to be a problem, especially in middle-aged female donors, but not in all female donors. Psychological evaluation pre donation and psychological support post donation are required.


Assuntos
Fadiga/etiologia , Doadores Vivos , Nefrectomia/efeitos adversos , Qualidade de Vida , Adulto , Fatores Etários , Idoso , Depressão/psicologia , Feminino , Humanos , Rim/fisiologia , Transplante de Rim , Doadores Vivos/psicologia , Masculino , Pessoa de Meia-Idade , Qualidade de Vida/psicologia , Fatores Sexuais , Inquéritos e Questionários
4.
Anaerobe ; 53: 94-107, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29859941

RESUMO

Clostridioides difficile is the major pathogen causing diarrhea following antibiotic treatment. It is considered to be a strictly anaerobic bacterium, however, previous studies have shown a certain and strain-dependent oxygen tolerance. In this study, the model strain C. difficile 630Δerm was shifted to micro-aerobiosis and was found to stay growing to the same extent as anaerobically growing cells with only few changes in the metabolite pattern. However, an extensive change in gene expression was determined by RNA-Seq. The most striking adaptation strategies involve a change in the reductive fermentation pathways of the amino acids proline, glycine and leucine. But also a far-reaching restructuring in the carbohydrate metabolism was detected with changes in the phosphotransferase system (PTS) facilitated uptake of sugars and a repression of enzymes of glycolysis and butyrate fermentation. Furthermore, a temporary induction in the synthesis of cofactor riboflavin was detected possibly due to an increased demand for flavin mononucleotid (FMN) and flavin adenine dinucleotide (FAD) in redox reactions. However, biosynthesis of the cofactors thiamin pyrophosphate and cobalamin were repressed deducing oxidation-prone enzymes and intermediates in these pathways. Micro-aerobically shocked cells were characterized by an increased demand for cysteine and a thiol redox proteomics approach revealed a dramatic increase in the oxidative state of cysteine in more than 800 peptides after 15 min of micro-aerobic shock. This provides not only a catalogue of oxidation-prone cysteine residues in the C. difficile proteome but also puts the amino acid cysteine into a key position in the oxidative stress response. Our study suggests that tolerance of C. difficile towards O2 is based on a complex and far-reaching adjustment of global gene expression which leads to only a slight change in phenotype.


Assuntos
Clostridioides difficile/efeitos dos fármacos , Clostridioides difficile/genética , Perfilação da Expressão Gênica , Estresse Oxidativo , Oxigênio/toxicidade , Aerobiose , Anaerobiose , Clostridioides difficile/crescimento & desenvolvimento , Genômica , Redes e Vias Metabólicas/genética , Proteômica
5.
Alzheimers Res Ther ; 15(1): 90, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37131196

RESUMO

BACKGROUND: Brain-directed immunotherapy is a promising strategy to target amyloid-ß (Aß) deposits in Alzheimer's disease (AD). In the present study, we compared the therapeutic efficacy of the Aß protofibril targeting antibody RmAb158 with its bispecific variant RmAb158-scFv8D3, which enters the brain by transferrin receptor-mediated transcytosis. METHODS: AppNL-G-F knock-in mice received RmAb158, RmAb158-scFv8D3, or PBS in three treatment regimens. First, to assess the acute therapeutic effect, a single antibody dose was given to 5 months old AppNL-G-F mice, with evaluation after 3 days. Second, to assess the antibodies' ability to halt the progression of Aß pathology, 3 months old AppNL-G-F mice received three doses during a week, with evaluation after 2 months. Reduction of RmAb158-scFv8D3 immunogenicity was explored by introducing mutations in the antibody or by depletion of CD4+ T cells. Third, to study the effects of chronic treatment, 7-month-old AppNL-G-F mice were CD4+ T cell depleted and treated with weekly antibody injections for 8 weeks, including a final diagnostic dose of [125I]RmAb158-scFv8D3, to determine its brain uptake ex vivo. Soluble Aß aggregates and total Aß42 were quantified with ELISA and immunostaining. RESULTS: Neither RmAb158-scFv8D3 nor RmAb158 reduced soluble Aß protofibrils or insoluble Aß1-42 after a single injection treatment. After three successive injections, Aß1-42 was reduced in mice treated with RmAb158, with a similar trend in RmAb158-scFv8D3-treated mice. Bispecific antibody immunogenicity was somewhat reduced by directed mutations, but CD4+ T cell depletion was used for long-term therapy. CD4+ T cell-depleted mice, chronically treated with RmAb158-scFv8D3, showed a dose-dependent increase in blood concentration of the diagnostic [125I]RmAb158-scFv8D3, while concentration was low in plasma and brain. Chronic treatment did not affect soluble Aß aggregates, but a reduction in total Aß42 was seen in the cortex of mice treated with both antibodies. CONCLUSIONS: Both RmAb158 and its bispecific variant RmAb158-scFv8D3 achieved positive effects of long-term treatment. Despite its ability to efficiently enter the brain, the benefit of using the bispecific antibody in chronic treatment was limited by its reduced plasma exposure, which may be a result of interactions with TfR or the immune system. Future research will focus in new antibody formats to further improve Aß immunotherapy.


Assuntos
Doença de Alzheimer , Camundongos , Animais , Doença de Alzheimer/genética , Camundongos Transgênicos , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Anticorpos/uso terapêutico , Anticorpos/farmacologia , Imunoterapia , Modelos Animais de Doenças
6.
Front Microbiol ; 13: 814692, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401433

RESUMO

The anaerobic bacterium Clostridioides difficile represents one of the most problematic pathogens, especially in hospitals. Dysbiosis has been proven to largely reduce colonization resistance against this intestinal pathogen. The beneficial effect of the microbiota is closely associated with the metabolic activity of intestinal microbes such as the ability to transform primary bile acids into secondary ones. However, the basis and the molecular action of bile acids (BAs) on the pathogen are not well understood. We stressed the pathogen with the four most abundant human bile acids: cholic acid (CA), chenodeoxycholic acid (CDCA), deoxycholic acid (DCA) and lithocholic acid (LCA). Thin layer chromatography (TLC), confocal laser scanning microscopy (CLSM), and electron microscopy (EM) were employed to track the enrichment and destination of bile acids in the bacterial cell. TLC not only revealed a strong accumulation of LCA in C. difficile, but also indicated changes in the composition of membrane lipids in BA-treated cells. Furthermore, morphological changes induced by BAs were determined, most pronounced in the virtually complete loss of flagella in LCA-stressed cells and a flagella reduction after DCA and CDCA challenge. Quantification of both, protein and RNA of the main flagella component FliC proved the decrease in flagella to originate from a change in gene expression on transcriptional level. Notably, the loss of flagella provoked by LCA did not reduce adhesion ability of C. difficile to Caco-2 cells. Most remarkably, extracellular toxin A levels in the presence of BAs showed a similar pattern as flagella expression. That is, CA did not affect toxin expression, whereas lower secretion of toxin A was determined in cells stressed with LCA, DCA or CDCA. In summary, the various BAs were shown to differentially modify virulence determinants, such as flagella expression, host cell adhesion and toxin synthesis. Our results indicate differences of BAs in cellular localization and impact on membrane composition, which could be a reason of their diverse effects. This study is a starting point in the elucidation of the molecular mechanisms underlying the differences in BA action, which in turn can be vital regarding the outcome of a C. difficile infection.

7.
Sci Rep ; 12(1): 21479, 2022 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-36509864

RESUMO

The blood-brain barrier (BBB) greatly limits the delivery of protein-based drugs into the brain and is a major obstacle for the treatment of brain disorders. Targeting the transferrin receptor (TfR) is a strategy for transporting protein-based drugs into the brain, which can be utilized by using TfR-binding BBB transporters, such as the TfR-binding antibody 8D3. In this current study, we investigated if binding to heparan sulfate (HS) contributes to the brain uptake of a single chain fragment variable of 8D3 (scFv8D3). We designed and produced a scFv8D3 mutant, engineered with additional HS binding sites, HS(+)scFv8D3, to assess whether increased HS binding would improve brain uptake. Additionally, a mutant with a reduced number of HS binding sites, HS(-)scFv8D3, was also engineered to see if reducing the HS binding sites could also affect brain uptake. Heparin column chromatography showed that only the HS(+)scFv8D3 mutant bound HS in the experimental conditions. Ex vivo results showed that the brain uptake was unaffected by the introduction or removal of HS binding sites, which indicates that scFv8D3 is not dependent on the HS binding sites for brain uptake. Conversely, introducing HS binding sites to scFv8D3 decreased its renal excretion while removing them had the opposite effect.


Assuntos
Barreira Hematoencefálica , Encéfalo , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Anticorpos/metabolismo , Heparitina Sulfato/metabolismo , Sítios de Ligação
8.
Neurotherapeutics ; 19(5): 1588-1602, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35939261

RESUMO

Amyloid-ß (Aß) oligomers and protofibrils are suggested to be the most neurotoxic Aß species in Alzheimer's disease (AD). Hence, antibodies with strong and selective binding to these soluble Aß aggregates are of therapeutic potential. We have recently introduced HexaRmAb158, a multivalent antibody with additional Aß-binding sites in the form of single-chain fragment variables (scFv) on the N-terminal ends of Aß protofibril selective antibody (RmAb158). Due to the additional binding sites and the short distance between them, HexaRmAb158 displayed a slow dissociation from protofibrils and strong binding to oligomers in vitro. In the current study, we aimed at investigating the therapeutic potential of this antibody format in vivo using mouse models of AD. To enhance BBB delivery, the transferrin receptor (TfR) binding moiety (scFv8D3) was added, forming the bispecific-multivalent antibody (HexaRmAb158-scFv8D3). The new antibody displayed a weaker TfR binding compared to the previously developed RmAb158-scFv8D3 and was less efficiently transcytosed in a cell-based BBB model. HexaRmAb158 detected soluble Aß aggregates derived from brains of tg-ArcSwe and AppNL-G-F mice more efficiently compared to RmAb158. When intravenously injected, HexaRmAb158-scFv8D3 was actively transported over the BBB into the brain in vivo. Brain uptake was marginally lower than that of RmAb158-scFv8D3, but significantly higher than observed for conventional IgG antibodies. Both antibody formats displayed similar brain retention (72 h post injection) and equal capacity in clearing soluble Aß aggregates in tg-ArcSwe mice. In conclusion, we demonstrate a bispecific-multivalent antibody format capable of passing the BBB and targeting a wide-range of sizes of soluble Aß aggregates.


Assuntos
Doença de Alzheimer , Animais , Camundongos , Doença de Alzheimer/tratamento farmacológico , Camundongos Transgênicos , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Receptores da Transferrina/metabolismo , Receptores da Transferrina/uso terapêutico , Imunoglobulina G/uso terapêutico
9.
Alzheimers Res Ther ; 14(1): 180, 2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36471433

RESUMO

BACKGROUND: Aggregation of the amyloid-ß (Aß) peptide in the brain is one of the key pathological events in Alzheimer's disease (AD). Reducing Aß levels in the brain by enhancing its degradation is one possible strategy to develop new therapies for AD. Neprilysin (NEP) is a membrane-bound metallopeptidase and one of the major Aß-degrading enzymes. The secreted soluble form of NEP (sNEP) has been previously suggested as a potential protein-therapy degrading Aß in AD. However, similar to other large molecules, peripherally administered sNEP is unable to reach the brain due to the presence of the blood-brain barrier (BBB). METHODS: To provide transcytosis across the BBB, we recombinantly fused the TfR binding moiety (scFv8D3) to either sNEP or a previously described variant of NEP (muNEP) suggested to have higher degradation efficiency of Aß compared to other NEP substrates, but not per se to degrade Aß more efficiently. To provide long blood half-life, an Fc-based antibody fragment (scFc) was added to the designs, forming sNEP-scFc-scFv8D3 and muNEP-scFc-scFv8D3. The ability of the mentioned recombinant proteins to degrade Aß was first evaluated in vitro using synthetic Aß peptides followed by sandwich ELISA. For the in vivo studies, a single injection of 125-iodine-labelled sNEP-scFc-scFv8D3 and muNEP-scFc-scFv8D3 was intravenously administered to a tg-ArcSwe mouse model of AD, using scFc-scFv8D3 protein that lacks NEP as a negative control. Different ELISA setups were applied to quantify Aß concentration of different conformations, both in brain tissues and blood samples. RESULTS: When tested in vitro, sNEP-scFc-scFv8D3 retained sNEP enzymatic activity in degrading Aß and both constructs efficiently degraded arctic Aß. When intravenously injected, sNEP-scFc-scFv8D3 demonstrated 20 times higher brain uptake compared to sNEP. Both scFv8D3-fused NEP proteins significantly reduced aggregated Aß levels in the blood of tg-ArcSwe mice, a transgenic mouse model of AD, following a single intravenous injection. In the brain, monomeric and oligomeric Aß were significantly reduced. Both scFv8D3-fused NEP proteins displayed a fast clearance from the brain. CONCLUSION: A one-time injection of a BBB-penetrating NEP shows the potential to reduce, the likely most toxic, Aß oligomers in the brain in addition to monomers. Also, Aß aggregates in the blood were reduced.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Barreira Hematoencefálica , Neprilisina , Animais , Camundongos , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Barreira Hematoencefálica/metabolismo , Modelos Animais de Doenças , Camundongos Transgênicos , Neprilisina/metabolismo , Proteólise
10.
ACS Chem Neurosci ; 12(13): 2529-2541, 2021 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-34170117

RESUMO

Alzheimer's disease is the most common neurodegenerative disorder characterized by the pathological aggregation of amyloid-ß (Aß) peptide. A potential therapeutic intervention in Alzheimer's disease is to enhance Aß degradation by increasing the activity of Aß-degrading enzymes, including neprilysin. The somatostatin (SST) peptide has been identified as an activator of neprilysin. Recently, we demonstrated the ability of a brain-penetrating SST peptide (SST-scFv8D3) to increase neprilysin activity and membrane-bound Aß42 degradation in the hippocampus of mice overexpressing the Aß-precursor protein with the Swedish mutation (APPswe). Using LC-MS, we further evaluated the anti-Alzheimer's disease effects of SST-scFv8D3. Following a triple intravenous injection of SST-scFv8D3, the LC-MS analysis of the brain proteome revealed that the majority of downregulated proteins consisted of mitochondrial proteins regulating fatty acid oxidation, which are otherwise upregulated in APPswe mice compared to wild-type mice. Moreover, treatment with SST-scFv8D3 significantly increased hippocampal levels of synaptic proteins regulating cell membrane trafficking and neuronal development. Finally, hippocampal concentrations of growth-regulated α (KC/GRO) chemokine and degradation of neuropeptide-Y were elevated after SST-scFv8D3 treatment. In summary, our results demonstrate a multifaceted effect profile in regulating mitochondrial function and neurogenesis following treatment with SST-scFv8D3, further suggesting the development of Alzheimer's disease therapies based on SST peptides.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , Proteoma , Somatostatina
11.
Transl Neurodegener ; 10(1): 38, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34579778

RESUMO

BACKGROUND: Amyloid-ß (Aß) immunotherapy is a promising therapeutic strategy in the fight against Alzheimer's disease (AD). A number of monoclonal antibodies have entered clinical trials for AD. Some of them have failed due to the lack of efficacy or side-effects, two antibodies are currently in phase 3, and one has been approved by FDA. The soluble intermediate aggregated species of Aß, termed oligomers and protofibrils, are believed to be key pathogenic forms, responsible for synaptic and neuronal degeneration in AD. Therefore, antibodies that can strongly and selectively bind to these soluble intermediate aggregates are of great diagnostic and therapeutic interest. METHODS: We designed and recombinantly produced a hexavalent antibody based on mAb158, an Aß protofibril-selective antibody. The humanized version of mAb158, lecanemab (BAN2401), is currently in phase 3 clinical trials for the treatment of AD. The new designs involved recombinantly fusing single-chain fragment variables to the N-terminal ends of mAb158 antibody. Real-time interaction analysis with LigandTracer and surface plasmon resonance were used to evaluate the kinetic binding properties of the generated antibodies to Aß protofibrils. Different ELISA setups were applied to demonstrate the binding strength of the hexavalent antibody to Aß aggregates of different sizes. Finally, the ability of the antibodies to protect cells from Aß-induced effects was evaluated by MTT assay. RESULTS: Using real-time interaction analysis with LigandTracer, the hexavalent design promoted a 40-times enhanced binding with avidity to protofibrils, and most of the added binding strength was attributed to the reduced rate of dissociation. Furthermore, ELISA experiments demonstrated that the hexavalent design also had strong binding to small oligomers, while retaining weak and intermediate binding to monomers and insoluble fibrils. The hexavalent antibody also reduced cell death induced by a mixture of soluble Aß aggregates. CONCLUSION: We provide a new antibody design with increased valency to promote binding avidity to an enhanced range of sizes of Aß aggregates. This approach should be general and work for any aggregated protein or repetitive target.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Amiloide , Peptídeos beta-Amiloides/metabolismo , Animais , Anticorpos Monoclonais , Camundongos , Camundongos Transgênicos
12.
Front Microbiol ; 10: 258, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30833939

RESUMO

Clostridioides difficile is an intestinal human pathogen that uses the opportunity of a depleted microbiota to cause an infection. It is known, that the composition of the intestinal bile acid cocktail has a great impact on the susceptibility toward a C. difficile infection. However, the specific response of growing C. difficile cells to diverse bile acids on the molecular level has not been described yet. In this study, we recorded proteome signatures of shock and long-term (LT) stress with the four main bile acids cholic acid (CA), chenodeoxycholic acid (CDCA), deoxycholic acid (DCA), and lithocholic acid (LCA). A general overlapping response to all tested bile acids could be determined particularly in shock experiments which appears plausible in the light of their common steroid structure. However, during LT stress several proteins showed an altered abundance in the presence of only a single or a few of the bile acids indicating the existence of specific adaptation mechanisms. Our results point at a differential induction of the groEL and dnaKJgrpE chaperone systems, both belonging to the class I heat shock genes. Additionally, central metabolic pathways involving butyrate fermentation and the reductive Stickland fermentation of leucine were effected, although CA caused a proteome signature different from the other three bile acids. Furthermore, quantitative proteomics revealed a loss of flagellar proteins in LT stress with LCA. The absence of flagella could be substantiated by electron microscopy which also indicated less flagellated cells in the presence of DCA and CDCA and no influence on flagella formation by CA. Our data break down the bile acid stress response of C. difficile into a general and a specific adaptation. The latter cannot simply be divided into a response to primary and secondary bile acids, but rather reflects a complex and variable adaptation process enabling C. difficile to survive and to cause an infection in the intestinal tract.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA