Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioinformatics ; 38(18): 4412-4414, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35916725

RESUMO

MOTIVATION: As pan-genome approaches are largely employed for bacterial comparative genomics and evolution analyses, but still difficult to be carried out by non-bioinformatician biologists, there is a need for an innovative tool facilitating the exploration of bacterial pan-genomes. RESULTS: PanExplorer is a web application providing various genomic analyses and reports, giving intuitive views that enable a better understanding of bacterial pan-genomes. As an example, we produced the pan-genome for 121 Anaplasmataceae strains (including 30 Ehrlichia, 15 Anaplasma, 68 Wolbachia). AVAILABILITY AND IMPLEMENTATION: PanExplorer is written in Perl CGI and relies on several JavaScript libraries for visualization (hotmap.js, MauveViewer, CircosJS). It is freely available at http://panexplorer.southgreen.fr. The source code has been released in a GitHub repository https://github.com/SouthGreenPlatform/PanExplorer. A documentation section is available on PanExplorer website.


Assuntos
Genoma Bacteriano , Bibliotecas , Genômica , Software , Internet
2.
PLoS Comput Biol ; 17(7): e1008788, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34252087

RESUMO

The identification of bacterial effectors is essential to understand how obligatory intracellular bacteria such as Ehrlichia spp. manipulate the host cell for survival and replication. Infection of mammals-including humans-by the intracellular pathogenic bacteria Ehrlichia spp. depends largely on the injection of virulence proteins that hijack host cell processes. Several hypothetical virulence proteins have been identified in Ehrlichia spp., but one so far has been experimentally shown to translocate into host cells via the type IV secretion system. However, the current challenge is to identify most of the type IV effectors (T4Es) to fully understand their role in Ehrlichia spp. virulence and host adaptation. Here, we predict the T4E repertoires of four sequenced Ehrlichia spp. and four other Anaplasmataceae as comparative models (pathogenic Anaplasma spp. and Wolbachia endosymbiont) using previously developed S4TE 2.0 software. This analysis identified 579 predicted T4Es (228 pT4Es for Ehrlichia spp. only). The effector repertoires of Ehrlichia spp. overlapped, thereby defining a conserved core effectome of 92 predicted effectors shared by all strains. In addition, 69 species-specific T4Es were predicted with non-canonical GC% mostly in gene sparse regions of the genomes and we observed a bias in pT4Es according to host-specificity. We also identified new protein domain combinations, suggesting novel effector functions. This work presenting the predicted effector collection of Ehrlichia spp. can serve as a guide for future functional characterisation of effectors and design of alternative control strategies against these bacteria.


Assuntos
Ehrlichia , Genoma Bacteriano/genética , Especificidade de Hospedeiro/genética , Sistemas de Secreção Tipo IV/genética , Virulência/genética , Animais , Proteínas de Bactérias , Biologia Computacional , Ehrlichia/genética , Ehrlichia/patogenicidade , Ehrlichiose/microbiologia , Humanos
3.
PLoS Comput Biol ; 15(3): e1006847, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30908487

RESUMO

Bacterial pathogens have evolved numerous strategies to corrupt, hijack or mimic cellular processes in order to survive and proliferate. Among those strategies, Type IV effectors (T4Es) are proteins secreted by pathogenic bacteria to manipulate host cell processes during infection. They are delivered into eukaryotic cells in an ATP-dependent manner via the type IV secretion system, a specialized multiprotein complex. T4Es contain a wide spectrum of features including eukaryotic-like domains, localization signals or a C-terminal translocation signal. A combination of these features enables prediction of T4Es in a given bacterial genome. In this study, we developed a web-based comprehensive suite of tools with a user-friendly graphical interface. This version 2.0 of S4TE (Searching Algorithm for Type IV Effector Proteins; http://sate.cirad.fr) enables accurate prediction and comparison of T4Es. Search parameters and threshold can be customized by the user to work with any genome sequence, whether publicly available or not. Applications range from characterizing effector features and identifying potential T4Es to analyzing the effectors based on the genome G+C composition and local gene density. S4TE 2.0 allows the comparison of putative T4E repertoires of up to four bacterial strains at the same time. The software identifies T4E orthologs among strains and provides a Venn diagram and lists of genes for each intersection. New interactive features offer the best visualization of the location of candidate T4Es and hyperlinks to NCBI and Pfam databases. S4TE 2.0 is designed to evolve rapidly with the publication of new experimentally validated T4Es, which will reinforce the predictive power of the algorithm. The computational methodology can be used to identify a wide spectrum of candidate bacterial effectors that lack sequence conservation but have similar amino acid characteristics. This approach will provide very valuable information about bacterial host-specificity and virulence factors and help identify host targets for the development of new anti-bacterial molecules.


Assuntos
Algoritmos , Genoma Bacteriano/genética , Genômica/métodos , Proteobactérias/genética , Sistemas de Secreção Tipo IV/genética , DNA Bacteriano/genética , Alinhamento de Sequência , Análise de Sequência de DNA , Interface Usuário-Computador
5.
Nucleic Acids Res ; 41(20): 9218-29, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23945940

RESUMO

Type IV effectors (T4Es) are proteins produced by pathogenic bacteria to manipulate host cell gene expression and processes, divert the cell machinery for their own profit and circumvent the immune responses. T4Es have been characterized for some bacteria but many remain to be discovered. To help biologists identify putative T4Es from the complete genome of α- and γ-proteobacteria, we developed a Perl-based command line bioinformatics tool called S4TE (searching algorithm for type-IV secretion system effectors). The tool predicts and ranks T4E candidates by using a combination of 13 sequence characteristics, including homology to known effectors, homology to eukaryotic domains, presence of subcellular localization signals or secretion signals, etc. S4TE software is modular, and specific motif searches are run independently before ultimate combination of the outputs to generate a score and sort the strongest T4Es candidates. The user keeps the possibility to adjust various searching parameters such as the weight of each module, the selection threshold or the input databases. The algorithm also provides a GC% and local gene density analysis, which strengthen the selection of T4E candidates. S4TE is a unique predicting tool for T4Es, finding its utility upstream from experimental biology.


Assuntos
Algoritmos , Proteínas de Bactérias/genética , Sistemas de Secreção Bacterianos/genética , Genoma Bacteriano , Proteobactérias/genética , Composição de Bases , Análise por Conglomerados , Genômica , Legionella pneumophila/genética , Software
6.
Cell Host Microbe ; 32(4): 588-605.e9, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38531364

RESUMO

Many powerful methods have been employed to elucidate the global transcriptomic, proteomic, or metabolic responses to pathogen-infected host cells. However, the host glycome responses to bacterial infection remain largely unexplored, and hence, our understanding of the molecular mechanisms by which bacterial pathogens manipulate the host glycome to favor infection remains incomplete. Here, we address this gap by performing a systematic analysis of the host glycome during infection by the bacterial pathogen Brucella spp. that cause brucellosis. We discover, surprisingly, that a Brucella effector protein (EP) Rhg1 induces global reprogramming of the host cell N-glycome by interacting with components of the oligosaccharide transferase complex that controls N-linked protein glycosylation, and Rhg1 regulates Brucella replication and tissue colonization in a mouse model of brucellosis, demonstrating that Brucella exploits the EP Rhg1 to reprogram the host N-glycome and promote bacterial intracellular parasitism, thereby providing a paradigm for bacterial control of host cell infection.


Assuntos
Brucella , Brucelose , Animais , Camundongos , Brucella/fisiologia , Proteômica , Brucelose/metabolismo , Retículo Endoplasmático/metabolismo
7.
PLoS One ; 18(2): e0266234, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36800354

RESUMO

Ehrlichia ruminantium is a tick-borne intracellular pathogen of ruminants that causes heartwater, a disease present in Sub-saharan Africa, islands in the Indian Ocean and the Caribbean, inducing significant economic losses. At present, three avirulent strains of E. ruminantium (Gardel, Welgevonden and Senegal isolates) have been produced by a process of serial passaging in mammalian cells in vitro, but unfortunately their use as vaccines do not offer a large range of protection against other strains, possibly due to the genetic diversity present within the species. So far no genetic basis for virulence attenuation has been identified in any E. ruminantium strain that could offer targets to facilitate vaccine production. Virulence attenuated Senegal strains have been produced twice independently, and require many fewer passages to attenuate than the other strains. We compared the genomes of a virulent and attenuated Senegal strain and identified a likely attenuator gene, ntrX, a global transcription regulator and member of a two-component system that is linked to environmental sensing. This gene has an inverted partial duplicate close to the parental gene that shows evidence of gene conversion in different E. ruminantium strains. The pseudogenisation of the gene in the avirulent Senegal strain occurred by gene conversion from the duplicate to the parent, transferring a 4 bp deletion which is unique to the Senegal strain partial duplicate amongst the wild isolates. We confirmed that the ntrX gene is not expressed in the avirulent Senegal strain by RT-PCR. The inverted duplicate structure combined with the 4 bp deletion in the Senegal strain can explain both the attenuation and the faster speed of attenuation in the Senegal strain relative to other strains of E. ruminantium. Our results identify nrtX as a promising target for the generation of attenuated strains of E. ruminantium by random or directed mutagenesis that could be used for vaccine production.


Assuntos
Ehrlichia ruminantium , Animais , Ehrlichia ruminantium/genética , Conversão Gênica , Senegal , Virulência/genética , Duplicações Segmentares Genômicas , Ruminantes/genética
8.
PLoS One ; 17(8): e0273668, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36040904

RESUMO

Wolbachia Hertig, 1936 is an intracellular bacterial symbiont colonizing many arthropods. Of the studies done on the bacteria present in the superfamily Gerroidea Leach, 1815, no report of Wolbachia infection had yet been made. Thus, we checked the presence of Wolbachia in six Gerroidea species which colonize tropical aquatic environments by PCR using wsp primer set before sequencing and phylogenetic analyses. Insects were collected in the marine fringe of mangroves, in river estuaries, in swampy mangroves, and in ponds from Guadeloupe islands (Caribbean). Two new strains of Wolbachia were detected in these Gerroidea. They were named wLfran and wRmang. The wsp sequences suggest that the strains belong to the already described E supergroup or similar. wLfran is present in Limnogonus franciscanus Stål, 1859 and Rheumatobates trinitatis (China, 1943) while wRmang appears to be present exclusively in R. mangrovensis (China, 1943). Three other species were analysed, but did not appear to be infected: Brachymetra albinerva (Amyot & Serville, 1843), Halobates micans Eschscheltz, 1822, and Microvelia pulchella Westwood, 1834. The results presented here highlight for the first time the presence of new intracellular Wolbachia strains in Gerroidea colonising tropical aquatic environments like mangrove habitats from inlands to sea shore.


Assuntos
Artrópodes , Heterópteros , Wolbachia , Animais , Artrópodes/microbiologia , DNA Bacteriano , Filogenia , Wolbachia/genética
9.
Bioinform Adv ; 2(1): vbac010, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36699379

RESUMO

Summary: Sequencing and other biological data are now more frequently available and at a lower price. Mutual tools and strategies are needed to analyze the huge amount of heterogeneous data generated by several research teams and devices. Bioinformatics represents a growing field in the scientific community globally. This multidisciplinary field provides a great amount of tools and methods that can be used to conduct scientific studies in a more strategic way. Coordinated actions and collaborations are needed to find more innovative and accurate methods for a better understanding of real-life data. A wide variety of organizations are contributing to KaruBioNet in Guadeloupe (French West Indies), a Caribbean archipelago. The purpose of this group is to foster collaboration and mutual aid among people from different disciplines using a 'one health' approach, for a better comprehension and surveillance of humans, plants or animals' health and diseases. The KaruBioNet network particularly aims to help researchers in their studies related to 'omics' data, but also more general aspects concerning biological data analysis. This transdisciplinary network is a platform for discussion, sharing, training and support between scientists interested in bioinformatics and related fields. Starting from a little archipelago in the Caribbean, we envision to facilitate exchange between other Caribbean partners in the future, knowing that the Caribbean is a region with non-negligible biodiversity which should be preserved and protected. Joining forces with other Caribbean countries or territories would strengthen scientific collaborative impact in the region. Information related to this network can be found at: http://www.pasteur-guadeloupe.fr/karubionet.html. Furthermore, a dedicated 'Galaxy KaruBioNet' platform is available at: http://calamar.univ-ag.fr/c3i/galaxy_karubionet.html. Availability and implementation Information about KaruBioNet is availabe at: http://www.pasteur-guadeloupe.fr/karubionet.html. Contact: dcouvin@pasteur-guadeloupe.fr. Supplementary information: Supplementary data are available at Bioinformatics Advances online.

10.
J Bacteriol ; 193(19): 5450-64, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21784931

RESUMO

Xanthomonas is a large genus of bacteria that collectively cause disease on more than 300 plant species. The broad host range of the genus contrasts with stringent host and tissue specificity for individual species and pathovars. Whole-genome sequences of Xanthomonas campestris pv. raphani strain 756C and X. oryzae pv. oryzicola strain BLS256, pathogens that infect the mesophyll tissue of the leading models for plant biology, Arabidopsis thaliana and rice, respectively, were determined and provided insight into the genetic determinants of host and tissue specificity. Comparisons were made with genomes of closely related strains that infect the vascular tissue of the same hosts and across a larger collection of complete Xanthomonas genomes. The results suggest a model in which complex sets of adaptations at the level of gene content account for host specificity and subtler adaptations at the level of amino acid or noncoding regulatory nucleotide sequence determine tissue specificity.


Assuntos
Genoma Bacteriano/genética , Xanthomonas/genética , Arabidopsis/microbiologia , Dados de Sequência Molecular , Oryza/microbiologia , Xanthomonas/fisiologia
11.
Front Public Health ; 9: 652079, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34409004

RESUMO

In Guadeloupe, a French overseas territory located in the Eastern Caribbean, infectious and non-infectious diseases, loss of biodiversity, natural disasters and global change threaten the health and well-being of animals, plants, and people. Implementing the "One Health" (OH) approach is crucial to reduce the archipelago's vulnerability to these health threats. However, OH remains underdeveloped in Guadeloupe, hampering efficient and effective intersectoral and transdisciplinary collaborations for disease surveillance and control. A multidisciplinary research group of volunteer researchers working in Guadeloupe, with collective expertise in infectious diseases, undertook a study to identify key attributes for OH operationalization by reviewing past and current local collaborative health initiatives and analyzing how much they mobilized the OH framework. The research group developed and applied an operational OH framework to assess critically collaborative initiatives addressing local health issues. Based on a literature review, a set of 13 opinion-based key criteria was defined. The criteria and associated scoring were measured through semi-directed interviews guided by a questionnaire to critically evaluate four initiatives in animal, human, plant, and environmental health research and epidemiological surveillance. Gaps, levers, and prospects were identified that will help health communities in Guadeloupe envision how to implement the OH approach to better address local health challenges. The methodology is simple, generic, and pragmatic and relies on existing resources. It can be transposed and adapted to other contexts to improve effectiveness and efficiency of OH initiatives, based on lessons-learned of local past or current multi-interdisciplinary and intersectoral initiatives.


Assuntos
Desastres Naturais , Saúde Única , Animais , Região do Caribe , Guadalupe , Humanos , Índias Ocidentais
12.
BMC Mol Biol ; 10: 111, 2009 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-20034374

RESUMO

BACKGROUND: Whole genome transcriptomic analysis is a powerful approach to elucidate the molecular mechanisms controlling the pathogenesis of obligate intracellular bacteria. However, the major hurdle resides in the low quantity of prokaryotic mRNAs extracted from host cells. Our model Ehrlichia ruminantium (ER), the causative agent of heartwater, is transmitted by tick Amblyomma variegatum. This bacterium affects wild and domestic ruminants and is present in Sub-Saharan Africa and the Caribbean islands. Because of its strictly intracellular location, which constitutes a limitation for its extensive study, the molecular mechanisms involved in its pathogenicity are still poorly understood. RESULTS: We successfully adapted the SCOTS method (Selective Capture of Transcribed Sequences) on the model Rickettsiales ER to capture mRNAs. Southern Blots and RT-PCR revealed an enrichment of ER's cDNAs and a diminution of ribosomal contaminants after three rounds of capture. qRT-PCR and whole-genome ER microarrays hybridizations demonstrated that SCOTS method introduced only a limited bias on gene expression. Indeed, we confirmed the differential gene expression between poorly and highly expressed genes before and after SCOTS captures. The comparative gene expression obtained from ER microarrays data, on samples before and after SCOTS at 96 hpi was significantly correlated (R2 = 0.7). Moreover, SCOTS method is crucial for microarrays analysis of ER, especially for early time points post-infection. There was low detection of transcripts for untreated samples whereas 24% and 70.7% were revealed for SCOTS samples at 24 and 96 hpi respectively. CONCLUSIONS: We conclude that this SCOTS method has a key importance for the transcriptomic analysis of ER and can be potentially used for other Rickettsiales. This study constitutes the first step for further gene expression analyses that will lead to a better understanding of both ER pathogenicity and the adaptation of obligate intracellular bacteria to their environment.


Assuntos
Ehrlichia ruminantium/química , Perfilação da Expressão Gênica/métodos , Análise de Sequência de DNA/métodos , Transcrição Gênica , Animais , Bovinos , Células Cultivadas , DNA Bacteriano/genética , DNA Complementar/genética , Ehrlichia ruminantium/genética , Cabras
13.
BMC Genomics ; 9: 204, 2008 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-18452608

RESUMO

BACKGROUND: Xanthomonas oryzae pv. oryzae causes bacterial blight of rice (Oryza sativa L.), a major disease that constrains production of this staple crop in many parts of the world. We report here on the complete genome sequence of strain PXO99A and its comparison to two previously sequenced strains, KACC10331 and MAFF311018, which are highly similar to one another. RESULTS: The PXO99A genome is a single circular chromosome of 5,240,075 bp, considerably longer than the genomes of the other strains (4,941,439 bp and 4,940,217 bp, respectively), and it contains 5083 protein-coding genes, including 87 not found in KACC10331 or MAFF311018. PXO99A contains a greater number of virulence-associated transcription activator-like effector genes and has at least ten major chromosomal rearrangements relative to KACC10331 and MAFF311018. PXO99A contains numerous copies of diverse insertion sequence elements, members of which are associated with 7 out of 10 of the major rearrangements. A rapidly-evolving CRISPR (clustered regularly interspersed short palindromic repeats) region contains evidence of dozens of phage infections unique to the PXO99A lineage. PXO99A also contains a unique, near-perfect tandem repeat of 212 kilobases close to the replication terminus. CONCLUSION: Our results provide striking evidence of genome plasticity and rapid evolution within Xanthomonas oryzae pv. oryzae. The comparisons point to sources of genomic variation and candidates for strain-specific adaptations of this pathogen that help to explain the extraordinary diversity of Xanthomonas oryzae pv. oryzae genotypes and races that have been isolated from around the world.


Assuntos
Evolução Molecular , Genoma Bacteriano/genética , Oryza/microbiologia , Xanthomonas/genética , Proteínas de Bactérias/genética , Sequência de Bases , Elementos de DNA Transponíveis/genética , Duplicação Gênica , Rearranjo Gênico , Transferência Genética Horizontal , Genômica , Repetições de Microssatélites , Reprodutibilidade dos Testes , Fatores de Tempo
14.
Artigo em Inglês | MEDLINE | ID: mdl-29868509

RESUMO

The obligate intracellular pathogenic bacterium, Ehrlichia ruminantium, is the causal agent of heartwater, a fatal disease in ruminants transmitted by Amblyomma ticks. So far, three strains have been attenuated by successive passages in mammalian cells. The attenuated strains have improved capacity for growth in vitro, whereas they induced limited clinical signs in vivo and conferred strong protection against homologous challenge. However, the mechanisms of pathogenesis and attenuation remain unknown. In order to improve knowledge of E. ruminantium pathogenesis, we performed a comparative transcriptomic analysis of two distant strains of E. ruminantium, Gardel and Senegal, and their corresponding attenuated strains. Overall, our results showed an upregulation of gene expression encoding for the metabolism pathway in the attenuated strains compared to the virulent strains, which can probably be associated with higher in vitro replicative activity and a better fitness to the host cells. We also observed a significant differential expression of membrane protein-encoding genes between the virulent and attenuated strains. A major downregulation of map1-related genes was observed for the two attenuated strains, whereas upregulation of genes encoding for hypothetical membrane proteins was observed for the four strains. Moreover, CDS_05140, which encodes for a putative porin, displays the highest gene expression in both attenuated strains. For the attenuated strains, the significant downregulation of map1-related gene expression and upregulation of genes encoding other membrane proteins could be important in the implementation of efficient immune responses after vaccination with attenuated vaccines. Moreover, this study revealed an upregulation of gene expression for 8 genes encoding components of Type IV secretion system and 3 potential effectors, mainly in the virulent Gardel strain. Our transcriptomic study, supported by previous proteomic studies, provides and also confirms new information regarding the characterization of genes involved in E. ruminantium virulence and attenuation mechanisms.


Assuntos
Antígenos de Bactérias/genética , Antígenos de Bactérias/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Ehrlichia ruminantium/genética , Ehrlichia ruminantium/metabolismo , Perfilação da Expressão Gênica/métodos , Genes Bacterianos/genética , Animais , DNA Bacteriano , Regulação para Baixo , Ehrlichia ruminantium/patogenicidade , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Hidropericárdio/microbiologia , Redes e Vias Metabólicas/genética , Proteômica , Transcriptoma/genética , Sistemas de Secreção Tipo IV/genética , Sistemas de Secreção Tipo IV/metabolismo , Regulação para Cima , Vacinas Atenuadas/genética , Vacinas Atenuadas/metabolismo , Virulência/genética
15.
16.
Artigo em Inglês | MEDLINE | ID: mdl-29404278

RESUMO

Ehrlichia ruminantium is an obligatory intracellular bacterium that causes heartwater, a fatal disease in ruminants. Due to its intracellular nature, E. ruminantium requires a set of specific virulence factors, such as the type IV secretion system (T4SS), and outer membrane proteins (Map proteins) in order to avoid and subvert the host's immune response. Several studies have been conducted to understand the regulation of the T4SS or outer membrane proteins, in Ehrlichia, but no integrated approach has been used to understand the regulation of Ehrlichia pathogenicity determinants in response to environmental cues. Iron is known to be a key nutrient for bacterial growth both in the environment and within hosts. In this study, we experimentally demonstrated the regulation of virB, map1, and tr1 genes by the newly identified master regulator ErxR (for Ehrlichia ruminantium expression regulator). We also analyzed the effect of iron depletion on the expression of erxR gene, tr1 transcription factor, T4SS and map1 genes clusters in E. ruminantium. We show that exposure of E. ruminantium to iron starvation induces erxR and subsequently tr1, virB, and map1 genes. Our results reveal tight co-regulation of T4SS and map1 genes via the ErxR regulatory protein at the transcriptional level, and, for the first time link map genes to the virulence function sensu stricto, thereby advancing our understanding of Ehrlichia's infection process. These results suggest that Ehrlichia is able to sense changes in iron concentrations in the environment and to regulate the expression of virulence factors accordingly.


Assuntos
Proteínas da Membrana Bacteriana Externa/genética , Ehrlichia ruminantium/genética , Ehrlichia ruminantium/metabolismo , Ferro/metabolismo , Família Multigênica , Fatores de Transcrição/genética , Sistemas de Secreção Tipo IV/genética , Sistemas de Secreção Tipo IV/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Genômica/métodos , Fatores de Transcrição/metabolismo
17.
Artigo em Inglês | MEDLINE | ID: mdl-28180111

RESUMO

During infection, some intracellular pathogenic bacteria use a dedicated multiprotein complex known as the type IV secretion system to deliver type IV effector (T4E) proteins inside the host cell. These T4Es allow the bacteria to evade host defenses and to subvert host cell processes to their own advantage. Ehrlichia chaffeensis is a tick-transmitted obligate intracellular pathogenic bacterium, which causes human monocytic ehrlichiosis. Using comparative whole genome analysis, we identified the relationship between eight available E. chaffeensis genomes isolated from humans and show that these genomes are highly conserved. We identified the candidate core type IV effectome of E. chaffeensis and some conserved intracellular adaptive strategies. We assigned the West Paces strain to genetic group II and predicted the repertoires of T4Es encoded by E. chaffeensis genomes, as well as some putative host cell targets. We demonstrated that predicted T4Es are preferentially distributed in gene sparse regions of the genome. In addition to the identification of the two known type IV effectors of Anaplasmataceae, we identified two novel candidates T4Es, ECHLIB_RS02720 and ECHLIB_RS04640, which are not present in all E. chaffeensis strains and could explain some variations in inter-strain virulence. We also identified another novel candidate T4E, ECHLIB_RS02720, a hypothetical protein exhibiting EPIYA, and NLS domains as well as a classical type IV secretion signal, suggesting an important role inside the host cell. Overall, our results agree with current knowledge of Ehrlichia molecular pathogenesis, and reveal novel candidate T4Es that require experimental validation. This work demonstrates that comparative effectomics enables identification of important host pathways targeted by the bacterial pathogen. Our study, which focuses on the type IV effector repertoires among several strains of E. chaffeensis species, is an original approach and provides rational putative targets for the design of alternative therapeutics against intracellular pathogens. The collection of putative effectors of E. chaffeensis described in our paper could serve as a roadmap for future studies of the function and evolution of effectors.


Assuntos
Ehrlichia chaffeensis/genética , Ehrlichia chaffeensis/patogenicidade , Genoma Bacteriano , Interações Hospedeiro-Patógeno , Sistemas de Secreção Tipo IV/genética , Fatores de Virulência/genética , Ehrlichia chaffeensis/classificação , Ehrlichia chaffeensis/isolamento & purificação , Ehrlichiose/microbiologia , Genômica , Genótipo , Humanos
18.
Microbes Infect ; 18(3): 172-9, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26617397

RESUMO

Ehrlichia is a large genus of obligate intracellular Gram-negative bacteria transmitted by ticks that cause several emerging infectious diseases in humans and are pathogenic on rodents, ruminants, and dogs. Ehrlichia spp. invade and replicate either in endothelial cells, white blood cells, or within midgut cells and salivary glands of their vector ticks. In this review, we discuss the insights that functional studies are providing on how this group of bacteria exploits their host by subverting host innate immunity and hijacking cellular processes.


Assuntos
Ehrlichia/patogenicidade , Interações Hospedeiro-Patógeno , Evasão da Resposta Imune , Animais , Cães , Humanos , Roedores , Carrapatos
19.
Artigo em Inglês | MEDLINE | ID: mdl-27610355

RESUMO

Diseases induced by obligate intracellular pathogens have a large burden on global human and animal health. Understanding the factors involved in the virulence and fitness of these pathogens contributes to the development of control strategies against these diseases. Based on biological observations, a theoretical model using game theory is proposed to explain how obligate intracellular bacteria interact with their host. The equilibrium in such a game shows that the virulence and fitness of the bacterium is host-triggered and by changing the host's defense system to which the bacterium is confronted, an evolutionary process leads to an attenuated strain. Although, the attenuation procedure has already been conducted in practice in order to develop an attenuated vaccine (e.g., with Ehrlichia ruminantium), there was a lack of understanding of the theoretical basis behind this process. Our work provides a model to better comprehend the existence of different phenotypes and some underlying evolutionary mechanisms for the virulence of obligate intracellular bacteria.


Assuntos
Bactérias/imunologia , Bactérias/patogenicidade , Vacinas Bacterianas/imunologia , Teoria dos Jogos , Modelos Biológicos , Animais , Evolução Biológica , Citoplasma/microbiologia , Ehrlichia ruminantium/imunologia , Ehrlichia ruminantium/patogenicidade , Hidropericárdio/imunologia , Hidropericárdio/prevenção & controle , Interações Hospedeiro-Patógeno , Humanos , Vacinas Atenuadas/imunologia , Virulência/imunologia
20.
Artigo em Inglês | MEDLINE | ID: mdl-27376032

RESUMO

"Candidatus Liberibacter solanacearum" (Lso) has emerged as a serious threat world-wide. Five Lso haplotypes have been identified so far. Haplotypes A and B are present in the Americas and/or New Zealand, where they are vectored to solanaceous plants by the potato psyllid, Bactericera cockerelli (Sulc) (Hemiptera: Triozidae). The fastidious nature of these pathogens has hindered the study of the interactions with their eukaryotic hosts (vector and plant). To understand the strategies used by these pathogens to infect their vector, the effects of each Lso haplotype (A or B) on psyllid fitness was investigated, and genome-wide transcriptomic and RT-qPCR analyses were performed to evaluate Lso gene expression in association with its vector. Results showed that psyllids infected with haplotype B had significantly lower percentage of nymphal survival compared to psyllids infected with haplotype A. Although overall gene expression across Lso genome was similar between the two Lso haplotypes, differences in the expression of key candidate genes were found. Among the 16 putative type IV effector genes tested, four of them were differentially expressed between Lso haplotypes, while no differences in gene expression were measured by qPCR or transcriptomic analysis for the rest of the genes. This study provides new information regarding the pathogenesis of Lso haplotypes in their insect vector.


Assuntos
Haplótipos , Hemípteros/fisiologia , Interações Hospedeiro-Patógeno , Insetos Vetores/fisiologia , Rhizobiaceae/crescimento & desenvolvimento , Rhizobiaceae/patogenicidade , Animais , Perfilação da Expressão Gênica , Hemípteros/microbiologia , Insetos Vetores/microbiologia , Reação em Cadeia da Polimerase em Tempo Real , Rhizobiaceae/classificação , Rhizobiaceae/genética , Análise de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA