Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 186(26): 5876-5891.e20, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-38134877

RESUMO

Harmonizing cell types across the single-cell community and assembling them into a common framework is central to building a standardized Human Cell Atlas. Here, we present CellHint, a predictive clustering tree-based tool to resolve cell-type differences in annotation resolution and technical biases across datasets. CellHint accurately quantifies cell-cell transcriptomic similarities and places cell types into a relationship graph that hierarchically defines shared and unique cell subtypes. Application to multiple immune datasets recapitulates expert-curated annotations. CellHint also reveals underexplored relationships between healthy and diseased lung cell states in eight diseases. Furthermore, we present a workflow for fast cross-dataset integration guided by harmonized cell types and cell hierarchy, which uncovers underappreciated cell types in adult human hippocampus. Finally, we apply CellHint to 12 tissues from 38 datasets, providing a deeply curated cross-tissue database with ∼3.7 million cells and various machine learning models for automatic cell annotation across human tissues.


Assuntos
Perfilação da Expressão Gênica , Transcriptoma , Humanos , Bases de Dados Factuais , Análise de Célula Única
2.
Cell ; 185(25): 4841-4860.e25, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36493756

RESUMO

We present a multiomic cell atlas of human lung development that combines single-cell RNA and ATAC sequencing, high-throughput spatial transcriptomics, and single-cell imaging. Coupling single-cell methods with spatial analysis has allowed a comprehensive cellular survey of the epithelial, mesenchymal, endothelial, and erythrocyte/leukocyte compartments from 5-22 post-conception weeks. We identify previously uncharacterized cell states in all compartments. These include developmental-specific secretory progenitors and a subtype of neuroendocrine cell related to human small cell lung cancer. Our datasets are available through our web interface (https://lungcellatlas.org). To illustrate its general utility, we use our cell atlas to generate predictions about cell-cell signaling and transcription factor hierarchies which we rigorously test using organoid models.


Assuntos
Feto , Pulmão , Humanos , Diferenciação Celular , Perfilação da Expressão Gênica , Pulmão/citologia , Organogênese , Organoides , Atlas como Assunto , Feto/citologia
3.
Cell ; 176(4): 882-896.e18, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30639098

RESUMO

T helper type 2 (Th2) cells are important regulators of mammalian adaptive immunity and have relevance for infection, autoimmunity, and tumor immunology. Using a newly developed, genome-wide retroviral CRISPR knockout (KO) library, combined with RNA-seq, ATAC-seq, and ChIP-seq, we have dissected the regulatory circuitry governing activation and differentiation of these cells. Our experiments distinguish cell activation versus differentiation in a quantitative framework. We demonstrate that these two processes are tightly coupled and are jointly controlled by many transcription factors, metabolic genes, and cytokine/receptor pairs. There are only a small number of genes regulating differentiation without any role in activation. By combining biochemical and genetic data, we provide an atlas for Th2 differentiation, validating known regulators and identifying factors, such as Pparg and Bhlhe40, as part of the core regulatory network governing Th2 helper cell fates.


Assuntos
Receptor Cross-Talk/imunologia , Células Th2/imunologia , Células Th2/metabolismo , Animais , Sistemas CRISPR-Cas/genética , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Cromatina , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Genoma , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Linfócitos T Auxiliares-Indutores/metabolismo , Fatores de Transcrição/metabolismo
4.
Nat Immunol ; 21(3): 343-353, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32066951

RESUMO

Gastrointestinal microbiota and immune cells interact closely and display regional specificity; however, little is known about how these communities differ with location. Here, we simultaneously assess microbiota and single immune cells across the healthy, adult human colon, with paired characterization of immune cells in the mesenteric lymph nodes, to delineate colonic immune niches at steady state. We describe distinct helper T cell activation and migration profiles along the colon and characterize the transcriptional adaptation trajectory of regulatory T cells between lymphoid tissue and colon. Finally, we show increasing B cell accumulation, clonal expansion and mutational frequency from the cecum to the sigmoid colon and link this to the increasing number of reactive bacterial species.


Assuntos
Colo/imunologia , Colo/microbiologia , Microbioma Gastrointestinal/imunologia , Adulto , Linfócitos B/imunologia , Colo/citologia , Humanos , Mucosa Intestinal/citologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Linfonodos/citologia , Linfonodos/imunologia , Ativação Linfocitária , Especificidade de Órgãos , RNA-Seq , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Reguladores/imunologia , Transcriptoma
5.
Nature ; 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898278

RESUMO

The COVID-19 pandemic is an ongoing global health threat, yet our understanding of the dynamics of early cellular responses to this disease remains limited1. Here in our SARS-CoV-2 human challenge study, we used single-cell multi-omics profiling of nasopharyngeal swabs and blood to temporally resolve abortive, transient and sustained infections in seronegative individuals challenged with pre-Alpha SARS-CoV-2. Our analyses revealed rapid changes in cell-type proportions and dozens of highly dynamic cellular response states in epithelial and immune cells associated with specific time points and infection status. We observed that the interferon response in blood preceded the nasopharyngeal response. Moreover, nasopharyngeal immune infiltration occurred early in samples from individuals with only transient infection and later in samples from individuals with sustained infection. High expression of HLA-DQA2 before inoculation was associated with preventing sustained infection. Ciliated cells showed multiple immune responses and were most permissive for viral replication, whereas nasopharyngeal T cells and macrophages were infected non-productively. We resolved 54 T cell states, including acutely activated T cells that clonally expanded while carrying convergent SARS-CoV-2 motifs. Our new computational pipeline Cell2TCR identifies activated antigen-responding T cells based on a gene expression signature and clusters these into clonotype groups and motifs. Overall, our detailed time series data can serve as a Rosetta stone for epithelial and immune cell responses and reveals early dynamic responses associated with protection against infection.

6.
Nature ; 603(7902): 706-714, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35104837

RESUMO

The SARS-CoV-2 Omicron BA.1 variant emerged in 20211 and has multiple mutations in its spike protein2. Here we show that the spike protein of Omicron has a higher affinity for ACE2 compared with Delta, and a marked change in its antigenicity increases Omicron's evasion of therapeutic monoclonal and vaccine-elicited polyclonal neutralizing antibodies after two doses. mRNA vaccination as a third vaccine dose rescues and broadens neutralization. Importantly, the antiviral drugs remdesivir and molnupiravir retain efficacy against Omicron BA.1. Replication was similar for Omicron and Delta virus isolates in human nasal epithelial cultures. However, in lung cells and gut cells, Omicron demonstrated lower replication. Omicron spike protein was less efficiently cleaved compared with Delta. The differences in replication were mapped to the entry efficiency of the virus on the basis of spike-pseudotyped virus assays. The defect in entry of Omicron pseudotyped virus to specific cell types effectively correlated with higher cellular RNA expression of TMPRSS2, and deletion of TMPRSS2 affected Delta entry to a greater extent than Omicron. Furthermore, drug inhibitors targeting specific entry pathways3 demonstrated that the Omicron spike inefficiently uses the cellular protease TMPRSS2, which promotes cell entry through plasma membrane fusion, with greater dependency on cell entry through the endocytic pathway. Consistent with suboptimal S1/S2 cleavage and inability to use TMPRSS2, syncytium formation by the Omicron spike was substantially impaired compared with the Delta spike. The less efficient spike cleavage of Omicron at S1/S2 is associated with a shift in cellular tropism away from TMPRSS2-expressing cells, with implications for altered pathogenesis.


Assuntos
COVID-19/patologia , COVID-19/virologia , Fusão de Membrana , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidade , Serina Endopeptidases/metabolismo , Internalização do Vírus , Adulto , Idoso , Idoso de 80 Anos ou mais , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , Vacinas contra COVID-19/imunologia , Linhagem Celular , Membrana Celular/metabolismo , Membrana Celular/virologia , Chlorocebus aethiops , Convalescença , Feminino , Humanos , Soros Imunes/imunologia , Intestinos/patologia , Intestinos/virologia , Pulmão/patologia , Pulmão/virologia , Masculino , Pessoa de Meia-Idade , Mutação , Mucosa Nasal/patologia , Mucosa Nasal/virologia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Técnicas de Cultura de Tecidos , Virulência , Replicação Viral
7.
Nature ; 597(7875): 196-205, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34497388

RESUMO

The Human Developmental Cell Atlas (HDCA) initiative, which is part of the Human Cell Atlas, aims to create a comprehensive reference map of cells during development. This will be critical to understanding normal organogenesis, the effect of mutations, environmental factors and infectious agents on human development, congenital and childhood disorders, and the cellular basis of ageing, cancer and regenerative medicine. Here we outline the HDCA initiative and the challenges of mapping and modelling human development using state-of-the-art technologies to create a reference atlas across gestation. Similar to the Human Genome Project, the HDCA will integrate the output from a growing community of scientists who are mapping human development into a unified atlas. We describe the early milestones that have been achieved and the use of human stem-cell-derived cultures, organoids and animal models to inform the HDCA, especially for prenatal tissues that are hard to acquire. Finally, we provide a roadmap towards a complete atlas of human development.


Assuntos
Movimento Celular , Rastreamento de Células , Células/citologia , Biologia do Desenvolvimento/métodos , Embrião de Mamíferos/citologia , Feto/citologia , Disseminação de Informação , Organogênese , Adulto , Animais , Atlas como Assunto , Técnicas de Cultura de Células , Sobrevivência Celular , Visualização de Dados , Feminino , Humanos , Imageamento Tridimensional , Masculino , Modelos Animais , Organogênese/genética , Organoides/citologia , Células-Tronco/citologia
8.
Nature ; 597(7875): 250-255, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34497389

RESUMO

The cellular landscape of the human intestinal tract is dynamic throughout life, developing in utero and changing in response to functional requirements and environmental exposures. Here, to comprehensively map cell lineages, we use single-cell RNA sequencing and antigen receptor analysis of almost half a million cells from up to 5 anatomical regions in the developing and up to 11 distinct anatomical regions in the healthy paediatric and adult human gut. This reveals the existence of transcriptionally distinct BEST4 epithelial cells throughout the human intestinal tract. Furthermore, we implicate IgG sensing as a function of intestinal tuft cells. We describe neural cell populations in the developing enteric nervous system, and predict cell-type-specific expression of genes associated with Hirschsprung's disease. Finally, using a systems approach, we identify key cell players that drive the formation of secondary lymphoid tissue in early human development. We show that these programs are adopted in inflammatory bowel disease to recruit and retain immune cells at the site of inflammation. This catalogue of intestinal cells will provide new insights into cellular programs in development, homeostasis and disease.


Assuntos
Envelhecimento , Sistema Nervoso Entérico/citologia , Feto/citologia , Saúde , Intestinos/citologia , Intestinos/crescimento & desenvolvimento , Linfonodos/citologia , Linfonodos/crescimento & desenvolvimento , Adulto , Animais , Criança , Doença de Crohn/patologia , Conjuntos de Dados como Assunto , Sistema Nervoso Entérico/anatomia & histologia , Sistema Nervoso Entérico/embriologia , Sistema Nervoso Entérico/crescimento & desenvolvimento , Células Epiteliais/citologia , Feminino , Feto/anatomia & histologia , Feto/embriologia , Humanos , Intestinos/embriologia , Intestinos/inervação , Linfonodos/embriologia , Linfonodos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Organogênese , Receptores de IgG/metabolismo , Transdução de Sinais , Análise Espaço-Temporal , Fatores de Tempo
9.
Nature ; 598(7880): 327-331, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34588693

RESUMO

Haematopoiesis in the bone marrow (BM) maintains blood and immune cell production throughout postnatal life. Haematopoiesis first emerges in human BM at 11-12 weeks after conception1,2, yet almost nothing is known about how fetal BM (FBM) evolves to meet the highly specialized needs of the fetus and newborn. Here we detail the development of FBM, including stroma, using multi-omic assessment of mRNA and multiplexed protein epitope expression. We find that the full blood and immune cell repertoire is established in FBM in a short time window of 6-7 weeks early in the second trimester. FBM promotes rapid and extensive diversification of myeloid cells, with granulocytes, eosinophils and dendritic cell subsets emerging for the first time. The substantial expansion of B lymphocytes in FBM contrasts with fetal liver at the same gestational age. Haematopoietic progenitors from fetal liver, FBM and cord blood exhibit transcriptional and functional differences that contribute to tissue-specific identity and cellular diversification. Endothelial cell types form distinct vascular structures that we show are regionally compartmentalized within FBM. Finally, we reveal selective disruption of B lymphocyte, erythroid and myeloid development owing to a cell-intrinsic differentiation bias as well as extrinsic regulation through an altered microenvironment in Down syndrome (trisomy 21).


Assuntos
Células da Medula Óssea/citologia , Medula Óssea , Síndrome de Down/sangue , Síndrome de Down/imunologia , Feto/citologia , Hematopoese , Sistema Imunitário/citologia , Linfócitos B/citologia , Células Dendríticas/citologia , Síndrome de Down/metabolismo , Síndrome de Down/patologia , Células Endoteliais/patologia , Eosinófilos/citologia , Células Eritroides/citologia , Granulócitos/citologia , Humanos , Imunidade , Células Mieloides/citologia , Células Estromais/citologia
10.
EMBO J ; 41(21): e111338, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36121125

RESUMO

The balance between self-renewal and differentiation in human foetal lung epithelial progenitors controls the size and function of the adult organ. Moreover, progenitor cell gene regulation networks are employed by both regenerating and malignant lung cells, where modulators of their effects could potentially be of therapeutic value. Details of the molecular networks controlling human lung progenitor self-renewal remain unknown. We performed the first CRISPRi screen in primary human lung organoids to identify transcription factors controlling progenitor self-renewal. We show that SOX9 promotes proliferation of lung progenitors and inhibits precocious airway differentiation. Moreover, by identifying direct transcriptional targets using Targeted DamID, we place SOX9 at the centre of a transcriptional network, which amplifies WNT and RTK signalling to stabilise the progenitor cell state. In addition, the proof-of-principle CRISPRi screen and Targeted DamID tools establish a new workflow for using primary human organoids to elucidate detailed functional mechanisms underlying normal development and disease.


Assuntos
Pulmão , Fatores de Transcrição SOX9 , Células-Tronco , Humanos , Diferenciação Celular/fisiologia , Pulmão/embriologia , Transdução de Sinais , Fatores de Transcrição SOX9/metabolismo , Células-Tronco/metabolismo
11.
Nature ; 574(7778): 365-371, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31597962

RESUMO

Definitive haematopoiesis in the fetal liver supports self-renewal and differentiation of haematopoietic stem cells and multipotent progenitors (HSC/MPPs) but remains poorly defined in humans. Here, using single-cell transcriptome profiling of approximately 140,000 liver and 74,000 skin, kidney and yolk sac cells, we identify the repertoire of human blood and immune cells during development. We infer differentiation trajectories from HSC/MPPs and evaluate the influence of the tissue microenvironment on blood and immune cell development. We reveal physiological erythropoiesis in fetal skin and the presence of mast cells, natural killer and innate lymphoid cell precursors in the yolk sac. We demonstrate a shift in the haemopoietic composition of fetal liver during gestation away from being predominantly erythroid, accompanied by a parallel change in differentiation potential of HSC/MPPs, which we functionally validate. Our integrated map of fetal liver haematopoiesis provides a blueprint for the study of paediatric blood and immune disorders, and a reference for harnessing the therapeutic potential of HSC/MPPs.


Assuntos
Feto/citologia , Hematopoese , Fígado/citologia , Fígado/embriologia , Células Sanguíneas/citologia , Microambiente Celular , Feminino , Feto/metabolismo , Citometria de Fluxo , Perfilação da Expressão Gênica , Humanos , Fígado/metabolismo , Tecido Linfoide/citologia , Análise de Célula Única , Células-Tronco/metabolismo
12.
Nature ; 563(7731): 347-353, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30429548

RESUMO

During early human pregnancy the uterine mucosa transforms into the decidua, into which the fetal placenta implants and where placental trophoblast cells intermingle and communicate with maternal cells. Trophoblast-decidual interactions underlie common diseases of pregnancy, including pre-eclampsia and stillbirth. Here we profile the transcriptomes of about 70,000 single cells from first-trimester placentas with matched maternal blood and decidual cells. The cellular composition of human decidua reveals subsets of perivascular and stromal cells that are located in distinct decidual layers. There are three major subsets of decidual natural killer cells that have distinctive immunomodulatory and chemokine profiles. We develop a repository of ligand-receptor complexes and a statistical tool to predict the cell-type specificity of cell-cell communication via these molecular interactions. Our data identify many regulatory interactions that prevent harmful innate or adaptive immune responses in this environment. Our single-cell atlas of the maternal-fetal interface reveals the cellular organization of the decidua and placenta, and the interactions that are critical for placentation and reproductive success.


Assuntos
Comunicação Celular , Feto/citologia , Histocompatibilidade Materno-Fetal/imunologia , Placenta/citologia , Placenta/metabolismo , Gravidez/imunologia , Análise de Célula Única , Comunicação Celular/imunologia , Diferenciação Celular/genética , Decídua/citologia , Decídua/imunologia , Decídua/metabolismo , Feminino , Feto/imunologia , Feto/metabolismo , Humanos , Células Matadoras Naturais/citologia , Células Matadoras Naturais/imunologia , Ligantes , Placenta/imunologia , RNA Citoplasmático Pequeno/genética , Análise de Sequência de RNA , Células Estromais/citologia , Células Estromais/metabolismo , Transcriptoma , Trofoblastos/citologia , Trofoblastos/imunologia , Trofoblastos/metabolismo
13.
Am J Respir Crit Care Med ; 207(5): 566-576, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36095143

RESUMO

Rationale: Obesity affects 40% of U.S. adults, is associated with a proinflammatory state, and presents a significant risk factor for the development of severe coronavirus disease (COVID-19). To date, there is limited information on how obesity might affect immune cell responses in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Objectives: To determine the impact of obesity on respiratory tract immunity in COVID-19 across the human lifespan. Methods: We analyzed single-cell transcriptomes from BAL in three ventilated adult cohorts with (n = 24) or without (n = 9) COVID-19 from nasal immune cells in children with (n = 14) or without (n = 19) COVID-19, and from peripheral blood mononuclear cells in an independent adult COVID-19 cohort (n = 42), comparing obese and nonobese subjects. Measurements and Main Results: Surprisingly, we found that obese adult subjects had attenuated lung immune or inflammatory responses in SARS-CoV-2 infection, with decreased expression of IFN-α, IFN-γ, and TNF-α (tumor necrosis factor α) response gene signatures in almost all lung epithelial and immune cell subsets, and lower expression of IFNG and TNF in specific lung immune cells. Peripheral blood immune cells in an independent adult cohort showed a similar but less marked reduction in type-I IFN and IFNγ response genes, as well as decreased serum IFNα, in obese patients with SARS-CoV-2. Nasal immune cells from obese children with COVID-19 also showed reduced enrichment of IFN-α and IFN-γ response genes. Conclusions: These findings show blunted tissue immune responses in obese patients with COVID-19, with implications for treatment stratification, supporting the specific application of inhaled recombinant type-I IFNs in this vulnerable subset.


Assuntos
COVID-19 , Interferon Tipo I , Obesidade Infantil , Adulto , Humanos , Criança , SARS-CoV-2 , Leucócitos Mononucleares , Pulmão/patologia
14.
Nucleic Acids Res ; 50(D1): D129-D140, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34850121

RESUMO

The EMBL-EBI Expression Atlas is an added value knowledge base that enables researchers to answer the question of where (tissue, organism part, developmental stage, cell type) and under which conditions (disease, treatment, gender, etc) a gene or protein of interest is expressed. Expression Atlas brings together data from >4500 expression studies from >65 different species, across different conditions and tissues. It makes these data freely available in an easy to visualise form, after expert curation to accurately represent the intended experimental design, re-analysed via standardised pipelines that rely on open-source community developed tools. Each study's metadata are annotated using ontologies. The data are re-analyzed with the aim of reproducing the original conclusions of the underlying experiments. Expression Atlas is currently divided into Bulk Expression Atlas and Single Cell Expression Atlas. Expression Atlas contains data from differential studies (microarray and bulk RNA-Seq) and baseline studies (bulk RNA-Seq and proteomics), whereas Single Cell Expression Atlas is currently dedicated to Single Cell RNA-Sequencing (scRNA-Seq) studies. The resource has been in continuous development since 2009 and it is available at https://www.ebi.ac.uk/gxa.


Assuntos
Bases de Dados Genéticas , Proteínas/genética , Proteômica , Software , Biologia Computacional , Perfilação da Expressão Gênica , Humanos , Proteínas/química , RNA-Seq , Análise de Sequência de RNA , Análise de Célula Única
15.
BMC Genomics ; 24(1): 722, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38030970

RESUMO

Cell type-specific differential gene expression analyses based on single-cell transcriptome datasets are sensitive to the presence of cell-free mRNA in the droplets containing single cells. This so-called ambient RNA contamination may differ between samples obtained from patients and healthy controls. Current ambient RNA correction methods were not developed specifically for single-cell differential gene expression (sc-DGE) analyses and might therefore not sufficiently correct for ambient RNA-derived signals. Here, we show that ambient RNA levels are highly sample-specific. We found that without ambient RNA correction, sc-DGE analyses erroneously identify transcripts originating from ambient RNA as cell type-specific disease-associated genes. We therefore developed a computationally lean and intuitive correction method, Fast Correction for Ambient RNA (FastCAR), optimized for sc-DGE analysis of scRNA-Seq datasets generated by droplet-based methods including the 10XGenomics Chromium platform. FastCAR uses the profile of transcripts observed in libraries that likely represent empty droplets to determine the level of ambient RNA in each individual sample, and then corrects for these ambient RNA gene expression values. FastCAR can be applied as part of the data pre-processing and QC in sc-DGE workflows comparing scRNA-Seq data in a health versus disease experimental design. We compared FastCAR with two methods previously developed to remove ambient RNA, SoupX and CellBender. All three methods identified additional genes in sc-DGE analyses that were not identified in the absence of ambient RNA correction. However, we show that FastCAR performs better at correcting gene expression values attributed to ambient RNA, resulting in a lower frequency of false-positive observations. Moreover, the use of FastCAR in a sc-DGE workflow increases the cell-type specificity of sc-DGE analyses across disease conditions.


Assuntos
Perfilação da Expressão Gênica , RNA , Humanos , RNA/metabolismo , Perfilação da Expressão Gênica/métodos , Análise de Sequência de RNA/métodos , Transcriptoma , Projetos de Pesquisa , Análise de Célula Única/métodos
16.
Thorax ; 78(4): 335-343, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36598042

RESUMO

RATIONALE: Severe asthma and chronic obstructive pulmonary disease (COPD) share common pathophysiological traits such as relative corticosteroid insensitivity. We recently published three transcriptome-associated clusters (TACs) using hierarchical analysis of the sputum transcriptome in asthmatics from the Unbiased Biomarkers for the Prediction of Respiratory Disease Outcomes (U-BIOPRED) cohort comprising one Th2-high inflammatory signature (TAC1) and two Th2-low signatures (TAC2 and TAC3). OBJECTIVE: We examined whether gene expression signatures obtained in asthma can be used to identify the subgroup of patients with COPD with steroid sensitivity. METHODS: Using gene set variation analysis, we examined the distribution and enrichment scores (ES) of the 3 TACs in the transcriptome of bronchial biopsies from 46 patients who participated in the Groningen Leiden Universities Corticosteroids in Obstructive Lung Disease COPD study that received 30 months of treatment with inhaled corticosteroids (ICS) with and without an added long-acting ß-agonist (LABA). The identified signatures were then associated with longitudinal clinical variables after treatment. Differential gene expression and cellular convolution were used to define key regulated genes and cell types. MEASUREMENTS AND MAIN RESULTS: Bronchial biopsies in patients with COPD at baseline showed a wide range of expression of the 3 TAC signatures. After ICS±LABA treatment, the ES of TAC1 was significantly reduced at 30 months, but those of TAC2 and TAC3 were unaffected. A corticosteroid-sensitive TAC1 signature was developed from the TAC1 ICS-responsive genes. This signature consisted of mast cell-specific genes identified by single-cell RNA-sequencing and positively correlated with bronchial biopsy mast cell numbers following ICS±LABA. Baseline levels of gene transcription correlated with the change in RV/TLC %predicted following 30-month ICS±LABA. CONCLUSION: Sputum-derived transcriptomic signatures from an asthma cohort can be recapitulated in bronchial biopsies of patients with COPD and identified a signature of airway mast cells as a predictor of corticosteroid responsiveness.


Assuntos
Corticosteroides , Asma , Mastócitos , Doença Pulmonar Obstrutiva Crônica , Células Th2 , Humanos , Administração por Inalação , Corticosteroides/uso terapêutico , Agonistas de Receptores Adrenérgicos beta 2/uso terapêutico , Asma/tratamento farmacológico , Asma/genética , Biomarcadores , Broncodilatadores/uso terapêutico , Quimioterapia Combinada , Mastócitos/efeitos dos fármacos , Mastócitos/metabolismo , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/genética , Células Th2/efeitos dos fármacos , Células Th2/metabolismo
17.
Bioinformatics ; 38(5): 1463-1464, 2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-34864914

RESUMO

MOTIVATION: Dendrogram is a classical diagram for visualizing binary trees. Although efficient to represent hierarchical relations, it provides limited space for displaying information on the leaf elements, especially for large trees. RESULTS: Here, we present TreeAndLeaf, an R/Bioconductor package that implements a hybrid layout strategy to represent tree diagrams with focus on the leaves. The TreeAndLeaf package combines force-directed graph and tree layout algorithms using a single visualization system, allowing projection of multiple layers of information onto a graph-tree diagram. The Supplementary Information provides two case studies that use breast cancer data from epidemiological and experimental studies. AVAILABILITY AND IMPLEMENTATION: TreeAndLeaf is written in the R language, and is available from the Bioconductor project at http://bioconductor.org/packages/TreeAndLeaf/ (version≥1.4.2). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Neoplasias da Mama , Software , Humanos , Feminino , Algoritmos , Idioma
18.
Circulation ; 144(4): 286-302, 2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34030460

RESUMO

BACKGROUND: Cellular diversity of the lung endothelium has not been systematically characterized in humans. We provide a reference atlas of human lung endothelial cells (ECs) to facilitate a better understanding of the phenotypic diversity and composition of cells comprising the lung endothelium. METHODS: We reprocessed human control single-cell RNA sequencing (scRNAseq) data from 6 datasets. EC populations were characterized through iterative clustering with subsequent differential expression analysis. Marker genes were validated by fluorescent microscopy and in situ hybridization. scRNAseq of primary lung ECs cultured in vitro was performed. The signaling network between different lung cell types was studied. For cross-species analysis or disease relevance, we applied the same methods to scRNAseq data obtained from mouse lungs or from human lungs with pulmonary hypertension. RESULTS: Six lung scRNAseq datasets were reanalyzed and annotated to identify >15 000 vascular EC cells from 73 individuals. Differential expression analysis of EC revealed signatures corresponding to endothelial lineage, including panendothelial, panvascular, and subpopulation-specific marker gene sets. Beyond the broad cellular categories of lymphatic, capillary, arterial, and venous ECs, we found previously indistinguishable subpopulations; among venous EC, we identified 2 previously indistinguishable populations: pulmonary-venous ECs (COL15A1neg) localized to the lung parenchyma and systemic-venous ECs (COL15A1pos) localized to the airways and the visceral pleura; among capillary ECs, we confirmed their subclassification into recently discovered aerocytes characterized by EDNRB, SOSTDC1, and TBX2 and general capillary EC. We confirmed that all 6 endothelial cell types, including the systemic-venous ECs and aerocytes, are present in mice and identified endothelial marker genes conserved in humans and mice. Ligand-receptor connectome analysis revealed important homeostatic crosstalk of EC with other lung resident cell types. scRNAseq of commercially available primary lung ECs demonstrated a loss of their native lung phenotype in culture. scRNAseq revealed that endothelial diversity is maintained in pulmonary hypertension. Our article is accompanied by an online data mining tool (www.LungEndothelialCellAtlas.com). CONCLUSIONS: Our integrated analysis provides a comprehensive and well-crafted reference atlas of ECs in the normal lung and confirms and describes in detail previously unrecognized endothelial populations across a large number of humans and mice.


Assuntos
Biomarcadores , Células Endoteliais/metabolismo , Pulmão/metabolismo , Análise de Célula Única , Capilares , Biologia Computacional/métodos , Bases de Dados Genéticas , Suscetibilidade a Doenças , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Pulmão/irrigação sanguínea , Pulmão/citologia , Microcirculação , Especificidade de Órgãos , Artéria Pulmonar , Veias Pulmonares , Análise de Célula Única/métodos , Transcriptoma
19.
Eur Respir J ; 60(2)2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35086829

RESUMO

The Human Cell Atlas (HCA) consortium aims to establish an atlas of all organs in the healthy human body at single-cell resolution to increase our understanding of basic biological processes that govern development, physiology and anatomy, and to accelerate diagnosis and treatment of disease. The Lung Biological Network of the HCA aims to generate the Human Lung Cell Atlas as a reference for the cellular repertoire, molecular cell states and phenotypes, and cell-cell interactions that characterise normal lung homeostasis in healthy lung tissue. Such a reference atlas of the healthy human lung will facilitate mapping the changes in the cellular landscape in disease. The discovAIR project is one of six pilot actions for the HCA funded by the European Commission in the context of the H2020 framework programme. discovAIR aims to establish the first draft of an integrated Human Lung Cell Atlas, combining single-cell transcriptional and epigenetic profiling with spatially resolving techniques on matched tissue samples, as well as including a number of chronic and infectious diseases of the lung. The integrated Human Lung Cell Atlas will be available as a resource for the wider respiratory community, including basic and translational scientists, clinical medicine, and the private sector, as well as for patients with lung disease and the interested lay public. We anticipate that the Human Lung Cell Atlas will be the founding stone for a more detailed understanding of the pathogenesis of lung diseases, guiding the design of novel diagnostics and preventive or curative interventions.


Assuntos
Pneumopatias , Pulmão , Humanos , Proteômica , Tórax
20.
Nucleic Acids Res ; 48(D1): D77-D83, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31665515

RESUMO

Expression Atlas is EMBL-EBI's resource for gene and protein expression. It sources and compiles data on the abundance and localisation of RNA and proteins in various biological systems and contexts and provides open access to this data for the research community. With the increased availability of single cell RNA-Seq datasets in the public archives, we have now extended Expression Atlas with a new added-value service to display gene expression in single cells. Single Cell Expression Atlas was launched in 2018 and currently includes 123 single cell RNA-Seq studies from 12 species. The website can be searched by genes within or across species to reveal experiments, tissues and cell types where this gene is expressed or under which conditions it is a marker gene. Within each study, cells can be visualized using a pre-calculated t-SNE plot and can be coloured by different features or by cell clusters based on gene expression. Within each experiment, there are links to downloadable files, such as RNA quantification matrices, clustering results, reports on protocols and associated metadata, such as assigned cell types.


Assuntos
Biologia Computacional/métodos , Bases de Dados de Ácidos Nucleicos , Perfilação da Expressão Gênica , Software , Perfilação da Expressão Gênica/métodos , Especificidade de Órgãos , Análise de Célula Única/métodos , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA