Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
J Environ Manage ; 354: 120312, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38340667

RESUMO

The increased use of antibiotics by humans for various purposes has left the environment polluted. Antibiotic pollution remediation is challenging because antibiotics exist in trace amounts and only highly sensitive detection techniques could be used to quantify them. Nevertheless, their trace quantity is not a hindrance to their transfer along the food chain, causing sensitization and the development of antibiotic resistance. Despite an increase in the literature on antibiotic pollution and the development and transfer of antibiotic-resistant genes (ARGs), little attention has been given to the behavior of antibiotics at the soil-solution interface and how this affects antibiotic adsorption-desorption interactions and subsequent uptake and transformation by plants. Thus, this review critically examines the interactions and possible degradation mechanisms of antibiotics in soil and the link between antibiotic soil-solution chemistry and uptake by plants. Also, different factors influencing antibiotic mobility in soil and the transfer of ARGs from one organism to another were considered. The mechanistic and critical analyses revealed that: (a) the charge characteristics of antibiotics at the soil-root interface determine whether they are adsorbed to soil or taken up by plants; (b) antibiotics that avoid soil colloids and reach soil pore water can be absorbed by plant roots, but their translocation to the stem and leaves depends on the ionic state of the molecule; (c) few studies have explored how plants adapt to antibiotic pollution and the transformation of antibiotics in plants; and (d) the persistence of antibiotics in cropland soils can be influenced by the content of soil organic matter, coexisting ions, and fertilization practices. Future research should focus on the soil/solution-antibiotic-plant interactions to reveal detailed mechanisms of antibiotic transformation by plants and whether plant-transformed antibiotics could be of environmental risk.


Assuntos
Antibacterianos , Poluentes do Solo , Humanos , Antibacterianos/metabolismo , Solo , Poluentes do Solo/química , Plantas/metabolismo , Poluição Ambiental/análise
2.
J Environ Manage ; 292: 112758, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34030015

RESUMO

This paper presents a review of synthetic polymer (notably plastic) wastes profiles in Africa, their current management status, and better options. Data revealed that of the approximated 86.14 million metric tonnes and 31.5 million metric tonnes of primary polymers and plastics, respectively, and an estimated 230 million metric tonnes of plastic components imported between 1990 and 2017, about 17 million metric tonnes are mismanaged. Leading African nations on the plastic wastes generator table in increasing order are Tunisia (6.9%), Morocco (9.6%), Algeria (11.2%), South Africa (11.6%), Nigeria (16.9%), and the chief is Egypt (18.4%). The volume of plastic wastes generated in Africa directly correlates with her increasing population status, however, the current treatment options have major drawbacks (high energy and technological input, high demand for space, and creation of obnoxious by-products). Ineffective regulations, poor monitoring, and slow adoption of veritable practices by governments are responsible for the steady increase in plastic volume in the African landscapes and environments. In Nigeria, only about 9% and 12% of the total generated wastes are recycled and incinerated. The remainder bulk is either discarded into waste dumps (and a few available landfills) or natural environments. There is a paucity of standard plastic biodegradative work by African scientists, and only a few works show detection of competent synthetic plastic degrading microbes globally. Asides from the ills of possible omission of core degraders, there is a need for researchers to follow standard degradation procedures to arrive at efficient, reproducible, and generally accepted outcomes utilizable on a larger scale. Thus, metagenomic search on the vast African urban and rural plastisphere is the best isolation option.


Assuntos
Plásticos , Gerenciamento de Resíduos , Egito , Marrocos , Nigéria , África do Sul , Tunísia
3.
J Nutr Metab ; 2024: 1868161, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39139215

RESUMO

Food safety is a global concern, with millions suffering from foodborne diseases annually. The World Health Organization (WHO) reports significant morbidity and mortality associated with contaminated food consumption, and this emphasizes the critical need for comprehensive food safety measures. Recent attention has turned to postbiotics, metabolic byproducts of probiotics, as potential agents for enhancing food safety. Postbiotics, including organic acids, enzymes, and bacteriocins, exhibit antimicrobial and antioxidant properties that do not require live organisms, and this offers advantages over probiotics. This literature review critically examines the role of postbiotics in gut microbiome modulation and applications in the food industry. Through an extensive review of existing literature, this study evaluates the impact of postbiotics on gut microbiome composition and their potential as functional food ingredients. Research indicates that postbiotics are effective in inhibiting food pathogens such as Staphylococcus aureus, Salmonella enterica, and Escherichia coli, as well as their ability to prevent oxidative stress-related diseases, and they also show promise as alternatives to conventional food preservatives that can extend food shelf life by inhibiting harmful bacterial growth. Their application in functional foods contributes to improved gut health and reduced risk of foodborne illnesses. Findings suggest that postbiotics hold promise for improving health and preservation by inhibiting pathogenic bacteria growth and modulating immune responses.

4.
Int J Biol Macromol ; 275(Pt 2): 133670, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38971293

RESUMO

Microorganisms' ice-binding structures (IBS) are macromolecules with potential commercial value in agriculture, food technology, material technology, cryobiology, and medicine. Microbial ice-structuring or microbial ice-binding particles, with their multi-applications, are simple to use, effective in low amounts, non-toxic, and environmentally friendly. Due to their source and composition diversities, microbial ice-binding structures are gaining attention because they are useable in various conditions. Some microorganisms also produce structures with dual ice-nucleating and anti-freezing properties. Structures that promote ice formation (ice nucleating particles- INPs) act as ice nuclei, lowering the energy barrier between supercooled liquid and ice, causing ice crystals to form. In contrast, anti-freeze particles (AFPs) prevent ice formation and recrystallization through several mechanisms, including disturbing the formation of string hydrogen bonds amongst water molecules, melting already formed ice crystals, and preventing crystal formation by binding to specific sites. Knowledge of the type and function of microbial ice-binding structures lends fundamental insight for possible scaling the production of cheap, functional, and advanced microbial structure-inspired mimics and by-products. This review focuses on microbial ice-binding structures and their potential uses in the food, medicinal, environmental, and agricultural sectors.


Assuntos
Gelo , Bactérias/metabolismo , Congelamento , Cristalização
5.
Sci Total Environ ; 881: 163469, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37061067

RESUMO

Antibiotic pollution is an ever-growing concern that affects the growth of plants and the well-being of animals and humans. Research on antibiotics remediation from aqueous media has grown over the years and previous reviews have highlighted recent advances in antibiotics remediation technologies, perspectives on antibiotics ecotoxicity, and the development of antibiotic-resistant genes. Nevertheless, the relationship between antibiotics solution chemistry, remediation technology, and the interactions between antibiotics and adsorbents at the molecular level is still elusive. Thus, this review summarizes recent literature on antibiotics remediation from aqueous media and the adsorption perspective. The review discusses the principles, mechanisms, and solution chemistry of antibiotics and how they affect remediation and the type of adsorbents used for antibiotic adsorption processes. The literature analysis revealed that: (i) Although antibiotics extraction and detection techniques have evolved from single-substrate-oriented to multi-substrates-oriented detection technologies, antibiotics pollution remains a great danger to the environment due to its trace level; (ii) Some of the most effective antibiotic remediation technologies are still at the laboratory scale. Thus, upscaling these technologies to field level will require funding, which brings in more constraints and doubts patterning to whether the technology will achieve the same performance as in the laboratory; and (iii) Adsorption technologies remain the most affordable for antibiotic remediation. However, the recent trends show more focus on developing high-end adsorbents which are expensive and sometimes less efficient compared to existing adsorbents. Thus, more research needs to focus on developing cheaper and less complex adsorbents from readily available raw materials. This review will be beneficial to stakeholders, researchers, and public health professionals for the efficient management of antibiotics for a refined decision.


Assuntos
Recuperação e Remediação Ambiental , Poluentes Químicos da Água , Animais , Humanos , Antibacterianos/análise , Poluentes Químicos da Água/análise , Águas Residuárias , Poluição Ambiental/análise , Adsorção , Água/análise
6.
Bioresour Technol ; 364: 128021, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36167175

RESUMO

The link between increasing global population, food demand, industrialization, and agricultural waste is strong. Decomposing by-products from food cycles can introduce harmful toxic heavy metals, active degrading microbes, and enzymes to the environment. Additionally, high greenhouse gas emissions from the decomposing wastes contribute to global change and a high carbon economy. The bioeconomy and circular economy of biosurfactant production utilize these cheap feedstocks and promote waste to valuable product initiatives. Waste reduction, reuse, and recycling in an integrating green economy bioprocess ensure the sustainability of novel, cost-effective, safe, and renewable health-grade biosurfactants. This work reviews green economy concepts integration with sustainable biosurfactant production and its application in health-related industries. Benefits from recent advances in the production, characterization, and health-wise classification of biosurfactants were further discussed, including its limitations, techno-economic assessment, market evaluations, possible roadblocks, and future directions.

7.
Food Chem (Oxf) ; 3: 100045, 2021 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-35415649

RESUMO

The interest in proteomic studies of fermented food is increasing; the role of proteins derived from fermentation extends beyond preservation, they also improve the organoleptic, anti-pathogenic, anti-cancer, anti-obesogenic properties, and other health conferring properties of fermented food. Traditional fermentation processes are still in use in certain cultures, but recently, the controlled process is gaining wider acceptance due to consistency and predictability. Scientists use modern biotechnological approaches to evaluate reactions and component yields from fermentation processes. Pieces of literature on fermented fish and vegetable end-products are scanty (compared to milk and meat), even though fish and vegetables are considered health conferring diets with high nutritional contents. Evaluations of peptides from fermented fish and vegetables show they have anti-obesity, anti-oxidative, anti-inflammatory, anti-pathogenic, anti-anti-nutrient, improves digestibility, taste, nutrient content, texture, aroma properties, etc. Despite challenges impeding the wider applications of the metaproteomic analysis of fermented fish and vegetables, their potential benefits cannot be underestimated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA