Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 83(2): 186-202.e11, 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36669479

RESUMO

PGC-1α is well established as a metazoan transcriptional coactivator of cellular adaptation in response to stress. However, the mechanisms by which PGC-1α activates gene transcription are incompletely understood. Here, we report that PGC-1α serves as a scaffold protein that physically and functionally connects the DNA-binding protein estrogen-related receptor α (ERRα), cap-binding protein 80 (CBP80), and Mediator to overcome promoter-proximal pausing of RNAPII and transcriptionally activate stress-response genes. We show that PGC-1α promotes pausing release in a two-arm mechanism (1) by recruiting the positive transcription elongation factor b (P-TEFb) and (2) by outcompeting the premature transcription termination complex Integrator. Using mice homozygous for five amino acid changes in the CBP80-binding motif (CBM) of PGC-1α that destroy CBM function, we show that efficient differentiation of primary myoblasts to myofibers and timely skeletal muscle regeneration after injury require PGC-1α binding to CBP80. Our findings reveal how PGC-1α activates stress-response gene transcription in a previously unanticipated pre-mRNA quality-control pathway.


Assuntos
Precursores de RNA , Fatores de Transcrição , Animais , Camundongos , Proteínas de Ligação a DNA/genética , Músculo Esquelético/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Regiões Promotoras Genéticas , Proteínas de Ligação ao Cap de RNA/genética , RNA Polimerase II/metabolismo , Precursores de RNA/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica
2.
J Cell Mol Med ; 28(1): e18025, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38147352

RESUMO

Smooth muscle cell (SMC) contraction and vascular tone are modulated by phosphorylation and multiple modifications of the thick filament, and thin filament regulation of SMC contraction has been reported to involve extracellular regulated kinase (ERK). Previous studies in ferrets suggest that the actin-binding protein, calponin 1 (CNN1), acts as a scaffold linking protein kinase C (PKC), Raf, MEK and ERK, promoting PKC-dependent ERK activation. To gain further insight into this function of CNN1 in ERK activation and the regulation of SMC contractility in mice, we generated a novel Calponin 1 knockout mouse (Cnn1 KO) by a single base substitution in an intronic CArG box that preferentially abolishes expression of CNN1 in vascular SMCs. Using this new Cnn1 KO mouse, we show that ablation of CNN1 has two effects, depending on the cytosolic free calcium level: (1) in the presence of elevated intracellular calcium caused by agonist stimulation, Cnn1 KO mice display a reduced amplitude of stress and stiffness but an increase in agonist-induced ERK activation; and (2) during intracellular calcium depletion, in the presence of an agonist, Cnn1 KO mice exhibit increased duration of SM tone maintenance. Together, these results suggest that CNN1 plays an important and complex modulatory role in SMC contractile tone amplitude and maintenance.


Assuntos
Calponinas , Músculo Liso Vascular , Animais , Camundongos , Músculo Liso Vascular/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Cálcio/metabolismo , Furões/metabolismo , Contração Muscular , Camundongos Knockout , Miócitos de Músculo Liso/metabolismo
3.
Circulation ; 148(1): 47-67, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37199168

RESUMO

BACKGROUND: Activation of vascular smooth muscle cell (VSMC) inflammation is vital to initiate vascular disease. The role of human-specific long noncoding RNAs in VSMC inflammation is poorly understood. METHODS: Bulk RNA sequencing in differentiated human VSMCs revealed a novel human-specific long noncoding RNA called inflammatory MKL1 (megakaryoblastic leukemia 1) interacting long noncoding RNA (INKILN). INKILN expression was assessed in multiple in vitro and ex vivo models of VSMC phenotypic modulation as well as human atherosclerosis and abdominal aortic aneurysm. The transcriptional regulation of INKILN was verified through luciferase reporter and chromatin immunoprecipitation assays. Loss-of-function and gain-of-function studies and multiple RNA-protein and protein-protein interaction assays were used to uncover a mechanistic role of INKILN in the VSMC proinflammatory gene program. Bacterial artificial chromosome transgenic mice were used to study INKILN expression and function in ligation injury-induced neointimal formation. RESULTS: INKILN expression is downregulated in contractile VSMCs and induced in human atherosclerosis and abdominal aortic aneurysm. INKILN is transcriptionally activated by the p65 pathway, partially through a predicted NF-κB (nuclear factor kappa B) site within its proximal promoter. INKILN activates proinflammatory gene expression in cultured human VSMCs and ex vivo cultured vessels. INKILN physically interacts with and stabilizes MKL1, a key activator of VSMC inflammation through the p65/NF-κB pathway. INKILN depletion blocks interleukin-1ß-induced nuclear localization of both p65 and MKL1. Knockdown of INKILN abolishes the physical interaction between p65 and MKL1 and the luciferase activity of an NF-κB reporter. Furthermore, INKILN knockdown enhances MKL1 ubiquitination through reduced physical interaction with the deubiquitinating enzyme USP10 (ubiquitin-specific peptidase 10). INKILN is induced in injured carotid arteries and exacerbates ligation injury-induced neointimal formation in bacterial artificial chromosome transgenic mice. CONCLUSIONS: These findings elucidate an important pathway of VSMC inflammation involving an INKILN/MKL1/USP10 regulatory axis. Human bacterial artificial chromosome transgenic mice offer a novel and physiologically relevant approach for investigating human-specific long noncoding RNAs under vascular disease conditions.


Assuntos
Aneurisma da Aorta Abdominal , RNA Longo não Codificante , Animais , Humanos , Camundongos , Aneurisma da Aorta Abdominal/metabolismo , Proliferação de Células , Células Cultivadas , Inflamação/genética , Inflamação/metabolismo , Luciferases/metabolismo , Camundongos Transgênicos , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , NF-kappa B/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Ubiquitina Tiolesterase/metabolismo
4.
Circulation ; 143(21): 2110-2116, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34029141

RESUMO

Vascular smooth muscle cells (VSMCs) have long been associated with phenotypic modulation/plasticity or dedifferentiation. Innovative technologies in cell lineage tracing, single-cell RNA sequencing, and human genomics have been integrated to gain unprecedented insights into the molecular reprogramming of VSMCs to other cell phenotypes in experimental and clinical atherosclerosis. The current thinking is that an apparently small subset of contractile VSMCs undergoes a fate switch to transitional, multipotential cells that can adopt plaque-destabilizing (inflammation, ossification) or plaque-stabilizing (collagen matrix deposition) cell states. Several candidate mediators of such VSMC fate and state changes are coming to light with intriguing implications for understanding coronary artery disease risk and the development of new treatment modalities. Here, we briefly summarize some technical and conceptual advancements derived from 2 publications in Circulation and another in Nature Medicine that, collectively, illuminate new research directions to further explore the role of VSMCs in atherosclerotic disease.


Assuntos
Aterosclerose/fisiopatologia , Músculo Liso Vascular/metabolismo , Proliferação de Células , Humanos
5.
Mamm Genome ; 33(2): 281-292, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35106622

RESUMO

The number of human LncRNAs has now exceeded all known protein-coding genes. Most studies of human LncRNAs have been conducted in cell culture systems where various mechanisms of action have been worked out. On the other hand, efforts to elucidate the function of human LncRNAs in an in vivo setting have been limited. In this brief review, we highlight some strengths and weaknesses of studying human LncRNAs in the mouse. Special consideration is given to bacterial artificial chromosome transgenesis and genome editing. The integration of these technical innovations offers an unprecedented opportunity to complement and extend the expansive literature of cell culture models for the study of human LncRNAs. Two different examples of how BAC transgenesis and genome editing can be leveraged to gain insight into human LncRNA regulation and function in mice are presented: the random integration of a vascular cell-enriched LncRNA and a targeted approach for a new LncRNA immediately upstream of the ACE2 gene, which encodes the receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiologic agent underlying the coronavirus disease-19 (COVID-19) pandemic.


Assuntos
COVID-19 , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , SARS-CoV-2/genética
6.
Circ Res ; 126(4): 517-529, 2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-31815603

RESUMO

RATIONALE: The gene encoding TCF21 (transcription factor 21) has been linked to coronary artery disease risk by human genome-wide association studies in multiple racial ethnic groups. In murine models, Tcf21 is required for phenotypic modulation of smooth muscle cells (SMCs) in atherosclerotic tissues and promotes a fibroblast phenotype in these cells. In humans, TCF21 expression inhibits risk for coronary artery disease. The molecular mechanism by which TCF21 regulates SMC phenotype is not known. OBJECTIVE: To better understand how TCF21 affects the SMC phenotype, we sought to investigate the possible mechanisms by which it regulates the lineage determining MYOCD (myocardin)-SRF (serum response factor) pathway. METHODS AND RESULTS: Modulation of TCF21 expression in human coronary artery SMC revealed that TCF21 suppresses a broad range of SMC markers, as well as key SMC transcription factors MYOCD and SRF, at the RNA and protein level. We conducted chromatin immunoprecipitation-sequencing to map SRF-binding sites in human coronary artery SMC, showing that binding is colocalized in the genome with TCF21, including at a novel enhancer in the SRF gene, and at the MYOCD gene promoter. In vitro genome editing indicated that the SRF enhancer CArG box regulates transcription of the SRF gene, and mutation of this conserved motif in the orthologous mouse SRF enhancer revealed decreased SRF expression in aorta and heart tissues. Direct TCF21 binding and transcriptional inhibition at colocalized sites were established by reporter gene transfection assays. Chromatin immunoprecipitation and protein coimmunoprecipitation studies provided evidence that TCF21 blocks MYOCD and SRF association by direct TCF21-MYOCD interaction. CONCLUSIONS: These data indicate that TCF21 antagonizes the MYOCD-SRF pathway through multiple mechanisms, further establishing a role for this coronary artery disease-associated gene in fundamental SMC processes and indicating the importance of smooth muscle response to vascular stress and phenotypic modulation of this cell type in coronary artery disease risk.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diferenciação Celular/genética , Doença da Artéria Coronariana/genética , Predisposição Genética para Doença/genética , Proteínas Nucleares/genética , Fator de Resposta Sérica/genética , Transativadores/genética , Sequência de Bases , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Sítios de Ligação/genética , Células Cultivadas , Regulação da Expressão Gênica , Células HEK293 , Humanos , Miócitos de Músculo Liso/citologia , Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas/genética , Ligação Proteica , Fator de Resposta Sérica/metabolismo , Transdução de Sinais/genética , Transativadores/metabolismo
7.
Proc Natl Acad Sci U S A ; 116(2): 546-555, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30584103

RESUMO

SENCR is a human-specific, vascular cell-enriched long-noncoding RNA (lncRNA) that regulates vascular smooth muscle cell and endothelial cell (EC) phenotypes. The underlying mechanisms of action of SENCR in these and other cell types is unknown. Here, levels of SENCR RNA are shown to be elevated in several differentiated human EC lineages subjected to laminar shear stress. Increases in SENCR RNA are also observed in the laminar shear stress region of the adult aorta of humanized SENCR-expressing mice, but not in disturbed shear stress regions. SENCR loss-of-function studies disclose perturbations in EC membrane integrity resulting in increased EC permeability. Biotinylated RNA pull-down and mass spectrometry establish an abundant SENCR-binding protein, cytoskeletal-associated protein 4 (CKAP4); this ribonucleoprotein complex was further confirmed in an RNA immunoprecipitation experiment using an antibody to CKAP4. Structure-function studies demonstrate a noncanonical RNA-binding domain in CKAP4 that binds SENCR Upon SENCR knockdown, increasing levels of CKAP4 protein are detected in the EC surface fraction. Furthermore, an interaction between CKAP4 and CDH5 is enhanced in SENCR-depleted EC. This heightened association appears to destabilize the CDH5/CTNND1 complex and augment CDH5 internalization, resulting in impaired adherens junctions. These findings support SENCR as a flow-responsive lncRNA that promotes EC adherens junction integrity through physical association with CKAP4, thereby stabilizing cell membrane-bound CDH5.


Assuntos
Junções Aderentes/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Proteínas de Membrana/metabolismo , RNA Longo não Codificante/metabolismo , Junções Aderentes/genética , Antígenos CD/genética , Antígenos CD/metabolismo , Caderinas/genética , Caderinas/metabolismo , Cateninas/genética , Cateninas/metabolismo , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos , Proteínas de Membrana/genética , Domínios Proteicos , RNA Longo não Codificante/genética , Resistência ao Cisalhamento/fisiologia , delta Catenina
8.
Proc Natl Acad Sci U S A ; 114(13): E2739-E2747, 2017 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-28292896

RESUMO

Megacystis microcolon intestinal hypoperistalsis syndrome (MMIHS) is a congenital visceral myopathy characterized by severe dilation of the urinary bladder and defective intestinal motility. The genetic basis of MMIHS has been ascribed to spontaneous and autosomal dominant mutations in actin gamma 2 (ACTG2), a smooth muscle contractile gene. However, evidence suggesting a recessive origin of the disease also exists. Using combined homozygosity mapping and whole exome sequencing, a genetically isolated family was found to carry a premature termination codon in Leiomodin1 (LMOD1), a gene preferentially expressed in vascular and visceral smooth muscle cells. Parents heterozygous for the mutation exhibited no abnormalities, but a child homozygous for the premature termination codon displayed symptoms consistent with MMIHS. We used CRISPR-Cas9 (CRISPR-associated protein) genome editing of Lmod1 to generate a similar premature termination codon. Mice homozygous for the mutation showed loss of LMOD1 protein and pathology consistent with MMIHS, including late gestation expansion of the bladder, hydronephrosis, and rapid demise after parturition. Loss of LMOD1 resulted in a reduction of filamentous actin, elongated cytoskeletal dense bodies, and impaired intestinal smooth muscle contractility. These results define LMOD1 as a disease gene for MMIHS and suggest its role in establishing normal smooth muscle cytoskeletal-contractile coupling.


Assuntos
Anormalidades Múltiplas/genética , Autoantígenos/fisiologia , Colo/anormalidades , Proteínas do Citoesqueleto/fisiologia , Pseudo-Obstrução Intestinal/genética , Proteínas Musculares/fisiologia , Bexiga Urinária/anormalidades , Animais , Autoantígenos/genética , Autoantígenos/metabolismo , Códon sem Sentido , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Feminino , Humanos , Recém-Nascido , Camundongos , Contração Muscular/genética , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculo Liso/fisiologia
10.
Arterioscler Thromb Vasc Biol ; 38(9): 2184-2190, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29976770

RESUMO

Objective- Unreliable antibodies often hinder the accurate detection of an endogenous protein, and this is particularly true for the cardiac and smooth muscle cofactor, MYOCD (myocardin). Accordingly, the mouse Myocd locus was targeted with 2 independent epitope tags for the unambiguous expression, localization, and activity of MYOCD protein. Approach and Results- 3cCRISPR (3-component clustered regularly interspaced short palindromic repeat) was used to engineer a carboxyl-terminal 3×FLAG or 3×HA epitope tag in mouse embryos. Western blotting with antibodies to each tag revealed a MYOCD protein product of ≈150 kDa, a size considerably larger than that reported in virtually all publications. MYOCD protein was most abundant in some adult smooth muscle-containing tissues with surprisingly low-level expression in the heart. Both alleles of Myocd are active in aorta because a 2-fold increase in protein was seen in mice homozygous versus heterozygous for FLAG-tagged Myocd. ChIP (chromatin immunoprecipitation)-quantitative polymerase chain reaction studies provide proof-of-principle data demonstrating the utility of this mouse line in conducting genome-wide ChIP-seq studies to ascertain the full complement of MYOCD-dependent target genes in vivo. Although FLAG-tagged MYOCD protein was undetectable in sections of adult mouse tissues, low-passaged vascular smooth muscle cells exhibited expected nuclear localization. Conclusions- This report validates new mouse models for analyzing MYOCD protein expression, localization, and binding activity in vivo and highlights the need for rigorous authentication of antibodies in biomedical research.


Assuntos
Sistemas CRISPR-Cas , Mapeamento de Epitopos/métodos , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Proteínas Nucleares/análise , Proteínas Nucleares/metabolismo , Transativadores/análise , Transativadores/metabolismo , Animais , Embrião de Mamíferos , Epitopos/análise , Camundongos , Músculo Liso Vascular/química , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/química
11.
J Am Soc Nephrol ; 29(2): 416-422, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29114040

RESUMO

Podocytes contain an intricate actin cytoskeleton that is essential for the specialized function of this cell type in renal filtration. Serum response factor (SRF) is a master transcription factor for the actin cytoskeleton, but the in vivo expression and function of SRF in podocytes are unknown. We found that SRF protein colocalizes with podocyte markers in human and mouse kidneys. Compared with littermate controls, mice in which the Srf gene was conditionally inactivated with NPHS2-Cre exhibited early postnatal proteinuria, hypoalbuminemia, and azotemia. Histologic changes in the mutant mice included glomerular capillary dilation and mild glomerulosclerosis, with reduced expression of multiple canonical podocyte markers. We also noted tubular dilation, cell proliferation, and protein casts as well as reactive changes in mesangial cells and interstitial inflammation. Ultrastructure analysis disclosed foot process effacement with loss of slit diaphragms. To ascertain the importance of SRF cofactors in podocyte function, we disabled the myocardin-related transcription factor A and B genes. Although loss of either SRF cofactor alone had no observable effect in the kidney, deficiency of both recapitulated the Srf-null phenotype. These results establish a vital role for SRF and two SRF cofactors in the maintenance of podocyte structure and function.


Assuntos
Actinas/metabolismo , Podócitos/metabolismo , Podócitos/ultraestrutura , Fator de Resposta Sérica/fisiologia , Transativadores/genética , Fatores de Transcrição/genética , Actinina/genética , Actinas/genética , Animais , Citoesqueleto , Dilatação Patológica/genética , Feminino , Humanos , Túbulos Renais Distais/patologia , Túbulos Renais Proximais/patologia , Masculino , Camundongos , Camundongos Knockout , Podócitos/fisiologia , RNA Mensageiro/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Proteínas Repressoras/genética , Fator de Resposta Sérica/genética , Proteínas WT1
12.
Arterioscler Thromb Vasc Biol ; 37(1): 21-25, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27856459

RESUMO

The new millennium heralds an unanticipated surge of genomic information, most notably an expansive class of long noncoding RNAs (lncRNAs). These transcripts, which now outnumber all protein-coding genes, often exhibit the same characteristics as mRNAs (RNA polymerase II-dependent, 5' methyl-capped, multiexonic, polyadenylated); yet, they do not encode for stable, well-conserved proteins. Elucidating the function of all relevant lncRNAs in heart, vasculature, lung, and blood is essential for generating a complete interactome in these tissues. This is particularly evident because an increasing number of investigators perform RNA-sequencing experiments where, typically, annotated lncRNAs exhibit impressive changes in gene expression. How does one go about evaluating an lncRNA when the sequence of the transcript lends no insight into how it may function within a cell type? Here, we provide a brief overview for the rational study of lncRNAs.


Assuntos
Doenças Cardiovasculares/genética , Genômica/métodos , Doenças Hematológicas/genética , Pneumopatias/genética , RNA Longo não Codificante/genética , Animais , Doenças Cardiovasculares/metabolismo , Biologia Computacional , Regulação da Expressão Gênica , Estudos de Associação Genética , Marcadores Genéticos , Predisposição Genética para Doença , Doenças Hematológicas/metabolismo , Humanos , Pneumopatias/metabolismo , Fenótipo , RNA Longo não Codificante/metabolismo
13.
Arterioscler Thromb Vasc Biol ; 37(2): 264-270, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28062498

RESUMO

OBJECTIVE: To identify and characterize the effect of a SNP (single-nucleotide polymorphism) in the STXBP5 locus that is associated with altered thrombosis in humans. GWAS (genome-wide association studies) have identified numerous SNPs associated with human thrombotic phenotypes, but determining the functional significance of an individual candidate SNP can be challenging, particularly when in vivo modeling is required. Recent GWAS led to the discovery of STXBP5 as a regulator of platelet secretion in humans. Further clinical studies have identified genetic variants of STXBP5 that are linked to altered plasma von Willebrand factor levels and thrombosis in humans, but the functional significance of these variants in STXBP5 is not understood. APPROACH AND RESULTS: We used CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated 9) techniques to produce a precise mouse model carrying a human coding SNP rs1039084 (encoding human p. N436S) in the STXBP5 locus associated with decreased thrombosis. Mice carrying the orthologous human mutation (encoding p. N437S in mouse STXBP5) have lower plasma von Willebrand factor levels, decreased thrombosis, and decreased platelet secretion compared with wild-type mice. This thrombosis phenotype recapitulates the phenotype of humans carrying the minor allele of rs1039084. Decreased plasma von Willebrand factor and platelet activation may partially explain the decreased thrombotic phenotype in mutant mice. CONCLUSIONS: Using precise mammalian genome editing, we have identified a human nonsynonymous SNP rs1039084 in the STXBP5 locus as a causal variant for a decreased thrombotic phenotype. CRISPR/Cas9 genetic editing facilitates the rapid and efficient generation of animals to study the function of human genetic variation in vascular diseases.


Assuntos
Coagulação Sanguínea/genética , Proteínas Associadas a CRISPR/genética , Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Edição de Genes/métodos , Proteínas do Tecido Nervoso/genética , Polimorfismo de Nucleotídeo Único , Proteínas R-SNARE/genética , Trombose/prevenção & controle , Animais , Plaquetas/metabolismo , Proteínas Associadas a CRISPR/metabolismo , Modelos Animais de Doenças , Regulação para Baixo , Exocitose , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Camundongos Transgênicos , Fenótipo , Ativação Plaquetária , Trombose/sangue , Trombose/genética , Fator de von Willebrand/metabolismo
14.
J Cell Physiol ; 232(10): 2806-2817, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27861881

RESUMO

Prostatic smooth muscle cells (pSMCs) differentiation is a key factor for prostatic homeostasis, with androgens exerting multiple effects on these cells. Here, we demonstrated that the myodifferentiator complex Srf/Myocd is up-regulated by testosterone in a dose-dependent manner in primary cultures of rat pSMCs, which was associated to the increase in Acta2, Cnn1, and Lmod1 expressions. Blocking Srf or Myocd by siRNAs inhibited the myodifferentiator effect of testosterone. While LPS led to a dedifferentiated phenotype in pSMCs, characterized by down-regulation of Srf/Myocd and smooth muscle cell (SMC)-restricted genes, endotoxin treatment on Myocd-overexpressing cells did not result in phenotypic alterations. Testosterone at a physiological dose was able to restore the muscular phenotype by normalizing Srf/Myocd expression in inflammation-induced dedifferentiated pSMCs. Moreover, the androgen reestablished the proliferation rate and IL-6 secretion increased by LPS. These results provide novel evidence regarding the myodifferentiating role of testosterone on SMCs by modulating Srf/Myocd. Thus, androgens preserve prostatic SMC phenotype, which is essential to maintain the normal structure and function of the prostate. J. Cell. Physiol. 232: 2806-2817, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Desdiferenciação Celular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Proteínas Nucleares/metabolismo , Testosterona/farmacologia , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Actinas/metabolismo , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Masculino , Proteínas dos Microfilamentos/metabolismo , Miócitos de Músculo Liso/metabolismo , Proteínas Nucleares/genética , Fenótipo , Próstata , Interferência de RNA , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Transativadores/genética , Fatores de Transcrição/genética , Transfecção , Calponinas
15.
Circulation ; 133(21): 2050-65, 2016 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-27052414

RESUMO

BACKGROUND: Phenotypic switching of vascular smooth muscle cells from a contractile to a synthetic state is implicated in diverse vascular pathologies, including atherogenesis, plaque stabilization, and neointimal hyperplasia. However, very little is known about the role of long noncoding RNA (lncRNA) during this process. Here, we investigated a role for lncRNAs in vascular smooth muscle cell biology and pathology. METHODS AND RESULTS: Using RNA sequencing, we identified >300 lncRNAs whose expression was altered in human saphenous vein vascular smooth muscle cells following stimulation with interleukin-1α and platelet-derived growth factor. We focused on a novel lncRNA (Ensembl: RP11-94A24.1), which we termed smooth muscle-induced lncRNA enhances replication (SMILR). Following stimulation, SMILR expression was increased in both the nucleus and cytoplasm, and was detected in conditioned media. Furthermore, knockdown of SMILR markedly reduced cell proliferation. Mechanistically, we noted that expression of genes proximal to SMILR was also altered by interleukin-1α/platelet-derived growth factor treatment, and HAS2 expression was reduced by SMILR knockdown. In human samples, we observed increased expression of SMILR in unstable atherosclerotic plaques and detected increased levels in plasma from patients with high plasma C-reactive protein. CONCLUSIONS: These results identify SMILR as a driver of vascular smooth muscle cell proliferation and suggest that modulation of SMILR may be a novel therapeutic strategy to reduce vascular pathologies.


Assuntos
Proliferação de Células/fisiologia , Músculo Liso Vascular/fisiologia , Miócitos de Músculo Liso/fisiologia , RNA Longo não Codificante/fisiologia , Proteínas de Caenorhabditis elegans , Células Cultivadas , Técnicas de Silenciamento de Genes , Humanos , Músculo Liso Vascular/citologia , Veia Safena/citologia , Veia Safena/fisiologia
16.
Arterioscler Thromb Vasc Biol ; 36(6): 1058-75, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27102963

RESUMO

Previous efforts to target the mouse genome for the addition, subtraction, or substitution of biologically informative sequences required complex vector design and a series of arduous steps only a handful of laboratories could master. The facile and inexpensive clustered regularly interspaced short palindromic repeats (CRISPR) method has now superseded traditional means of genome modification such that virtually any laboratory can quickly assemble reagents for developing new mouse models for cardiovascular research. Here, we briefly review the history of CRISPR in prokaryotes, highlighting major discoveries leading to its formulation for genome modification in the animal kingdom. Core components of CRISPR technology are reviewed and updated. Practical pointers for 2-component and 3-component CRISPR editing are summarized with many applications in mice including frameshift mutations, deletion of enhancers and noncoding genes, nucleotide substitution of protein-coding and gene regulatory sequences, incorporation of loxP sites for conditional gene inactivation, and epitope tag integration. Genotyping strategies are presented and topics of genetic mosaicism and inadvertent targeting discussed. Finally, clinical applications and ethical considerations are addressed as the biomedical community eagerly embraces this astonishing innovation in genome editing to tackle previously intractable questions.


Assuntos
Proteínas Associadas a CRISPR/genética , Sistemas CRISPR-Cas , Doenças Cardiovasculares/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Edição de Genes/métodos , Animais , Proteínas Associadas a CRISPR/metabolismo , Doenças Cardiovasculares/fisiopatologia , Doenças Cardiovasculares/terapia , Modelos Animais de Doenças , Regulação da Expressão Gênica , Terapia Genética/métodos , Genótipo , Humanos , Camundongos , Camundongos Knockout , Mosaicismo , Fenótipo
17.
Arterioscler Thromb Vasc Biol ; 36(10): 2088-99, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27444199

RESUMO

OBJECTIVE: Long noncoding RNAs (lncRNA) represent a growing class of noncoding genes with diverse cellular functions. We previously reported on SENCR, an lncRNA that seems to support the vascular smooth muscle cell (VSMC) contractile phenotype. However, information about the VSMC-specific lncRNAs regulated by myocardin (MYOCD)/serum response factor, the master switch for VSMC differentiation, is unknown. APPROACH AND RESULTS: To define novel lncRNAs with functions related to VSMC differentiation, we performed RNA sequencing in human coronary artery SMCs that overexpress MYOCD. Several novel lncRNAs showed altered expression with MYOCD overexpression and one, named MYOcardin-induced Smooth muscle LncRNA, Inducer of Differentiation (MYOSLID), was activated by MYOCD and selectively expressed in VSMCs. MYOSLID was a direct transcriptional target of both MYOCD/serum response factor and transforming growth factor-ß/SMAD pathways. Functional studies revealed that MYOSLID promotes VSMC differentiation and inhibits VSMC proliferation. MYOSLID showed reduced expression in failed human arteriovenous fistula samples compared with healthy veins. Although MYOSLID did not affect gene expression of transcription factors, such as serum response factor and MYOCD, its depletion in VSMCs disrupted actin stress fiber formation and blocked nuclear translocation of MYOCD-related transcription factor A (MKL1). Finally, loss of MYOSLID abrogated transforming growth factor-ß1-induced SMAD2 phosphorylation. CONCLUSIONS: We have demonstrated that MYOSLID, the first human VSMC-selective and serum response factor/CArG-dependent lncRNA, is a novel modulator in amplifying the VSMC differentiation program, likely through feed-forward actions of both MKL1 and transforming growth factor-ß/SMAD pathways.


Assuntos
Diferenciação Celular , Desenvolvimento Muscular , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Proteínas Nucleares/metabolismo , RNA Longo não Codificante/metabolismo , Fator de Resposta Sérica/metabolismo , Transativadores/metabolismo , Transporte Ativo do Núcleo Celular , Derivação Arteriovenosa Cirúrgica , Proliferação de Células , Células Cultivadas , Vasos Coronários/metabolismo , Regulação da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Proteínas Nucleares/genética , Fenótipo , Fosforilação , RNA Longo não Codificante/genética , Fator de Resposta Sérica/genética , Transdução de Sinais , Proteína Smad2/metabolismo , Fibras de Estresse/metabolismo , Fatores de Tempo , Transativadores/genética , Transcrição Gênica , Transfecção , Fator de Crescimento Transformador beta1/metabolismo , Vasoconstrição
18.
Mol Ther ; 24(5): 978-90, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26898221

RESUMO

Despite the increasing importance of long noncoding RNA in physiology and disease, their role in endothelial biology remains poorly understood. Growing evidence has highlighted them to be essential regulators of human embryonic stem cell differentiation. SENCR, a vascular-enriched long noncoding RNA, overlaps the Friend Leukemia Integration virus 1 (FLI1) gene, a regulator of endothelial development. Therefore, we wanted to test the hypothesis that SENCR may contribute to mesodermal and endothelial commitment as well as in endothelial function. We thus developed new differentiation protocols allowing generation of endothelial cells from human embryonic stem cells using both directed and hemogenic routes. The expression of SENCR was markedly regulated during endothelial commitment using both protocols. SENCR did not control the pluripotency of pluripotent cells; however its overexpression significantly potentiated early mesodermal and endothelial commitment. In human umbilical endothelial cell (HUVEC), SENCR induced proliferation, migration, and angiogenesis. SENCR expression was altered in vascular tissue and cells derived from patients with critical limb ischemia and premature coronary artery disease compared to controls. Here, we showed that SENCR contributes to the regulation of endothelial differentiation from pluripotent cells and controls the angiogenic capacity of HUVEC. These data give novel insight into the regulatory processes involved in endothelial development and function.


Assuntos
Células Endoteliais/fisiologia , Neovascularização Patológica/genética , RNA Longo não Codificante/genética , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Regulação da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana , Humanos , Transdução de Sinais
19.
Dev Psychobiol ; 59(2): 235-249, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27917473

RESUMO

Early parental loss is associated with social-emotional dysregulation and amygdala physiologic changes. Previously, we examined whole amygdala gene expression in infant monkeys exposed to early maternal deprivation. Here, we focus on an amygdala region with immature neurons at birth: the paralaminar nucleus (PL). We hypothesized that 1) the normal infant PL is enriched in a subset of neural maturation (NM) genes compared to a nearby amygdala subregion; and 2) maternal deprivation would downregulate expression of NM transcripts (mRNA). mRNAs for bcl2, doublecortin, neuroD1, and tbr1-genes expressed in post-mitotic neurons-were enriched in the normal PL. Maternal deprivation at either 1 week or 1 month of age resulted in PL-specific downregulation of tbr1-a transcription factor necessary for directing neuroblasts to a glutamatergic phenotype. tbr1 expression also correlated with typical social behaviors. We conclude that maternal deprivation influences glutamatergic neuronal development in the PL, possibly influencing circuits mediating social learning.


Assuntos
Complexo Nuclear Basolateral da Amígdala/metabolismo , Comportamento Animal/fisiologia , Privação Materna , Comportamento Social , Proteínas com Domínio T/metabolismo , Animais , Feminino , Macaca
20.
Am J Physiol Heart Circ Physiol ; 311(4): H904-H912, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27521420

RESUMO

Homeostatic control of vascular smooth muscle cell (VSMC) differentiation is critical for contractile activity and regulation of blood flow. Recently, we reported that precontracted blood vessels are relaxed and the phenotype of VSMC is regulated from a synthetic to contractile state by glucose-6-phosphate dehydrogenase (G6PD) inhibition. In the current study, we investigated whether the increase in the expression of VSMC contractile proteins by inhibition and knockdown of G6PD is mediated through a protein kinase G (PKG)-dependent pathway and whether it regulates blood pressure. We found that the expression of VSMC-restricted contractile proteins, myocardin (MYOCD), and miR-1 and miR-143 are increased by G6PD inhibition or knockdown. Importantly, RNA-sequence analysis of aortic tissue from G6PD-deficient mice revealed uniform increases in VSMC-restricted genes, particularly those regulated by the MYOCD-serum response factor (SRF) switch. Conversely, expression of Krüppel-like factor 4 (KLF4) is decreased by G6PD inhibition. Interestingly, the G6PD inhibition-induced expression of miR-1 and contractile proteins was blocked by Rp-ß-phenyl-1,N2-etheno-8-bromo-guanosine-3',5'-cyclic monophosphorothioate, a PKG inhibitor. On the other hand, MYOCD and miR-143 levels are increased by G6PD inhibition through a PKG-independent manner. Furthermore, blood pressure was lower in the G6PD-deficient compared with wild-type mice. Therefore, our results suggest that the expression of VSMC contractile proteins induced by G6PD inhibition occurs via PKG1α-dependent and -independent pathways.


Assuntos
Aorta/metabolismo , Proteínas Contráteis/genética , Proteína Quinase Dependente de GMP Cíclico Tipo I/metabolismo , Glucosefosfato Desidrogenase/antagonistas & inibidores , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Animais , Aorta/efeitos dos fármacos , Western Blotting , Bovinos , Cromatografia Líquida , Proteínas Contráteis/efeitos dos fármacos , Proteínas Contráteis/metabolismo , Proteína Quinase Dependente de GMP Cíclico Tipo I/antagonistas & inibidores , Proteínas Quinases Dependentes de GMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Técnicas de Silenciamento de Genes , Glucosefosfato Desidrogenase/genética , Imunoprecipitação , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/efeitos dos fármacos , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos , MicroRNAs/efeitos dos fármacos , MicroRNAs/genética , Músculo Liso Vascular/citologia , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Proteínas Nucleares/efeitos dos fármacos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Reação em Cadeia da Polimerase , Ratos , Fator de Resposta Sérica/efeitos dos fármacos , Fator de Resposta Sérica/genética , Fator de Resposta Sérica/metabolismo , Espectrometria de Massas em Tandem , Transativadores/efeitos dos fármacos , Transativadores/genética , Transativadores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA