Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Small ; 19(20): e2207821, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36807771

RESUMO

Carbon-based polymer brushes (CBPBs) are an important class of functional polymer materials, which synergistically combine the advantageous properties of both carbons and polymers. However, the conventional fabrication procedures of CBPBs involve tedious multistep modification, including preoxidation of carbon substrates, introduction of initiating groups, and subsequent graft polymerization. In this study, a simple yet versatile defect-engineering strategy is proposed for the efficient synthesis of high-grafting-density CBPBs with highly stable CC linkages via free radical polymerization. This strategy involves the introduction and removal of nitrogen heteroatoms in the carbon skeletons via a simple temperature-Fmed heat treatment, leading to the formation of numerous carbon defects (e.g., pentagons, heptagons, and octagons) with reactive C=C bonds in the carbon substrates. The as-proposed methodology enables the facile fabrication of CBPBs with various carbon substrates and polymers. More importantly, the highly grafted polymer chains in the resulting CBPBs are tethered with the carbon skeletons by robust CC bonds, which can endure strong acid and alkali environments. These interesting findings will shed new light on the well-orchestrated design of CBPBs and broaden their applications in various areas with fascinating performances.

2.
Water Sci Technol ; 82(10): 2085-2097, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33263586

RESUMO

In order to solve the problems of high energy consumption and low current efficiency in electrochemical oxidation (EO) degradation under the traditional constant output process (COP), a gradient output process (GOP) of current density is proposed in this paper. That is, the current density is gradually reduced in a fixed degradation time, and the Reactive Blue 19 simulated dye wastewater was used as the degradation target. The general applicability of the process was further confirmed by studying the optimal gradient current density output parameters, the dye concentration, electrolyte concentration and other dye compounds with different molecular structures. The corresponding results show that the chemical oxygen demand (COD) removal (78%) and the color removal (100%) under the GOP are similar to those in the COP, and the overall energy consumption is reduced by about 50% compared with that in the traditional constant current mode. Moreover, the current efficiency in the middle and late stages of EO process has increased by 8.6 times compared with COP.


Assuntos
Diamante , Poluentes Químicos da Água , Boro , Corantes , Eletrodos , Oxirredução , Estresse Oxidativo , Águas Residuárias , Poluentes Químicos da Água/análise
3.
Water Sci Technol ; 81(5): 925-935, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32541111

RESUMO

In this paper, boron-doped diamond (BDD) electro-activated persulfate was studied to decompose malachite green (MG). The degradation results indicate that the decolorization performance of MG for the BDD electro-activated persulfate (BDD-EAP) system is 3.37 times that of BDD electrochemical oxidation (BDD-EO) system, and BDD-EAP system also exhibited an enhanced total organic content (TOC) removal (2.2 times) compared with BDD-EO system. Besides, the degradation parameters such as persulfate concentration, current density, and pH were studied in detail. In a wider range of pH (2-10), the MG can be efficiently removed (>95%) in 0.02 M persulfate solution with a low current density of 1.7 mA/cm2 after 30 min. The BDD-EAP technology decomposes organic compounds without the diffusion limitation and avoids pH adjustment, which makes the EO treatment of organic wastewater more efficient and more economical.


Assuntos
Diamante , Poluentes Químicos da Água , Boro , Eletrodos , Oxirredução , Corantes de Rosanilina
4.
iScience ; 27(1): 108737, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38269099

RESUMO

Lead (Pb(II)) contamination is common in liquid foods and can result from Pb(II) being present in the raw materials or during handling processes. However, due to the complexity of food matrices, there is limited data available concerning Pb(II) ion removal from food sources. This study focused on fabricating a PVA/PAA/DMTD electrospun nanofibrous membrane (ENFM) to efficiently and selectively remove Pb(II) ions from liquid foods. The PVA/PAA/DMTD ENFM had a maximum adsorption capacity of 138.3 mg/g for Pb(II) ions and demonstrated high selectivity toward the removal of Pb(II) ions. Negative values of the Gibbs free energy (ΔG°) showed that the spontaneous nature of the adsorption process was feasible at different temperatures. Moreover, it successfully removed Pb(II) ions from selected samples of commercially available drinks. Therefore, this adsorbent exhibits significant potential for removing Pb(II) ions from liquid food products, thereby reducing daily dietary exposure to Pb(II).

5.
Adv Sci (Weinh) ; 11(26): e2309586, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38686448

RESUMO

Easy injection, long-lasting barrier, and drug loading are the critical properties of submucosal injection materials for endoscopic surgery. However, conventional injectable polymers face challenges in simultaneously attaining these properties due to the inherent conflict between injectability and in situ stability. Here, a multi-arm star polymer hydrogel (denoted as ßCP hydrogel) with long-lasting submucosal barrier (exceeding 120 min), rapid hemostasis, and sustained antibacterial properties is successfully developed by grafting poly(oligo(ethylene glycol) methyl ether methacrylate) (PEGMA) side-chains from ß-CD via atom transfer radical polymerization (ATRP). During the onset of shearing, ßCP hydrogel experiences the unwinding of polymer side-chains between neighboring star polymers, which facilitates the process of endoscopic injectability. After submucosal injection, ßCP hydrogel undergoes the winding of polymer side-chains, thereby establishing a long-lasting barrier cushion. Meanwhile, owing to its distinctive structures with a hydrophobic inner cavity and an outer layer of hydrophilic polymer side-chains, ßCP hydrogel enables simultaneous loading and on-demand release of diverse categories of drugs. This unique performance can adapt to the diverse demands during different stages of wound healing in a porcine endoscopic surgery model. These results indicate an appealing prospect for new application of star polymers as a good submucosal injection material in endoscopic treatments.


Assuntos
Hidrogéis , Polímeros , Cicatrização , Animais , Cicatrização/efeitos dos fármacos , Suínos , Hidrogéis/química , Polímeros/química , Polietilenoglicóis/química , Modelos Animais de Doenças , Metacrilatos/química , Antibacterianos/farmacologia , Antibacterianos/administração & dosagem
6.
Adv Mater ; 36(24): e2307845, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38408735

RESUMO

Contamination tolerance and long-term mechanical support are the two critical properties of meshes for contaminated abdominal wall defect repair. However, biological meshes with excellent pollution tolerance fail to provide bio-adaptive long-term mechanical support due to their rapid degradation. Here, a novel double-layer asymmetric porous mesh (SIS/PVA-EXO) is designed by simple and efficient in situ freeze-thaw of sticky polyvinyl alcohol (PVA) solution on the loosely porous surface of small intestinal submucosal decellularized matrix (SIS), which can successfully repair the contaminated abdominal wall defect with bio-adaptive dynamic mechanical support through only single-stage surgery. The exosome-loaded degradable loosely porous SIS layer accelerates the tissue healing; meanwhile, the exosome-loaded densely porous PVA layer can maintain long-term mechanical support without any abdominal adhesion. In addition, the tensile strength and strain at break of SIS/PVA-EXO mesh change gradually from 0.37 MPa and 210% to 0.10 MPa and 385% with the degradation of SIS layer. This unique performance can dynamically adapt to the variable mechanical demands during different periods of contaminated abdominal wall reconstruction. As a result, this SIS/PVA-EXO mesh shows an attractive prospect in the treatment of contaminated abdominal wall defect without recurrence by integrating local immune regulation, tissue remodeling, and dynamic mechanical supporting.


Assuntos
Parede Abdominal , Álcool de Polivinil , Telas Cirúrgicas , Porosidade , Parede Abdominal/cirurgia , Animais , Álcool de Polivinil/química , Resistência à Tração , Cicatrização , Materiais Biocompatíveis/química
7.
Adv Mater ; 35(21): e2211471, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36807410

RESUMO

The development of highly sophisticated biomimetic models is significant yet remains challenging in the electrochemical energy storage field. Lithium-sulfur (Li-S) cells with high sulfur content and high-sulfur-loading cathodes are urgently required to meet the fast-growing demand for electronic devices. Nevertheless, such cathode materials generally suffer from large sulfur agglomeration, nonporous structure, and insufficient conductivity, leading to rapid capacity decay and low sulfur utilization. Herein, inspired by rough endoplasmic reticulum, a 2D polystyrene (PS)-brush-based (G-g-PS) superhigh-sulfur-content (96 wt%) composite(G-g-sPS@S) is fabricated via the vulcanization reaction. The vulcanized PS side-chains and their S8 composites on the nanosheet surface can efficiently provide sulfur species, and the intersheet interstitial pores can provide rapid mass-transfer channels for redox reactions of sulfur species. Furthermore, the highly sulfophilic vulcanized PS side-chains are able to effectively inhibit the shuttle effect of polysulfides and regulate their redox process. With these merits, the cells with G-g-sPS@S cathodes exhibit an ultralow decay rate of 0.02% per cycle over 400 cycles at 2 C and deliver a superior areal capacity of 12.6 mAh cm-2 even with a high sulfur loading of 10.5 mg cm-2 .

8.
Chemosphere ; 252: 126499, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32224356

RESUMO

Cyanide-containing organic wastewater is discharged in large quantities by coking, electroplating and pharmaceutical industries, which seriously endangers environmental safety and human health. In this paper, Electrochemical Oxidation-Persulfate (EO-PS) Advanced Oxidation Process (AOP) was firstly used to treat high concentration cyanide-containing organic wastewater obtained from a chemical enterprise. The potential application of this process in the treatment of high concentration cyanide-containing organic wastewater was explored for the first time, and the effects of current density, initial pH, temperature and initial concentration on chemical oxygen demand (COD), total organic carbon (TOC) and total cyanide (CN-) removal in wastewater were systematically investigated. The results shown that the EO-PS process had an excellent removal effect on organics and cyanide in high concentration cyanide-containing organic wastewater which contained 11,290 mg L-1 COD, 4456 mg L-1 TOC and 1280.15 mg L-1 CN-. The COD, TOC and CN- removal at optimized operating parameters for 24 h were 95.8%, 87.8% and 98.4%, respectively. The corresponding electrical energy per order was only 41.6 kWh m-3 order-1. In addition, the pollutants removal can be accelerated under conditions of high current density, acidic solution, appropriate temperature and low pollutant concentration, among which low current density, low pH, appropriate temperature and low pollutant concentration can effectively diminish energy consumption. Cyanide, COD and TOC degradation in all reaction conditions followed the pseudo-first-order kinetic model.


Assuntos
Cianetos/química , Sulfatos/química , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Poluentes Químicos da Água/química , Análise da Demanda Biológica de Oxigênio , Boro , Coque , Cianetos/toxicidade , Diamante , Eletrodos , Cinética , Oxirredução , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA