Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Pharmacol ; 14: 1148171, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37533633

RESUMO

Non-small cell lung cancer (NSCLC) is a common pathological type of lung cancer, which has a serious impact on human life, health, psychology and life. At present, chemotherapy, targeted therapy and other methods commonly used in clinic are prone to drug resistance and toxic side effects. Natural extracts of traditional Chinese medicine (TCM) have attracted wide attention in cancer treatment because of their small toxic and side effects. Kaempferol is a flavonoid from natural plants, which has been proved to have anticancer properties in many cancers such as lung cancer, but the exact molecular mechanism is still unclear. Therefore, on the basis of in vitro experiments, we used network pharmacology and molecular docking methods to study the potential mechanism of kaempferol in the treatment of non-small cell lung cancer. The target of kaempferol was obtained from the public database (PharmMapper, Swiss target prediction), and the target of non-small cell lung cancer was obtained from the disease database (Genecards and TTD). At the same time, we collected gene chips GSE32863 and GSE75037 in conjunction with GEO database to obtain differential genes. By drawing Venn diagram, we get the intersection target of kaempferol and NSCLC. Through enrichment analysis, PI3K/AKT is identified as the possible key signal pathway. PIK3R1, AKT1, EGFR and IGF1R were selected as key targets by topological analysis and molecular docking, and the four key genes were further verified by analyzing the gene and protein expression of key targets. These findings provide a direction for further research of kaempferol in the treatment of NSCLC.

2.
J Inequal Appl ; 2018(1): 195, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30137923

RESUMO

Recently, based on the Hadjidimos preconditioner, a preconditioned GAOR method was proposed for solving the linear complementarity problem (Liu and Li in East Asian J. Appl. Math. 2:94-107, 2012). In this paper, we propose a new preconditioned GAOR method for solving the linear complementarity problem with an M-matrix. The convergence of the proposed method is analyzed, and the comparison results are obtained to show it accelerates the convergence of the original GAOR method and the preconditioned GAOR method in (Liu and Li in East Asian J. Appl. Math. 2:94-107, 2012). Numerical examples verify the theoretical analysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA