Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 24(47): 29186-29194, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36444952

RESUMO

The conventional fabrication methods (for example, melting and powder metallurgy) of bulk thermoelectric materials are time- and energy-consuming, which restrict their large-scale application. In this work, ultra-fast self-propagating synthesis under a high-gravity field was used to prepare SnTe bulks, which shortened the synthesis time from several days to a few seconds. The grain growth was suppressed and some small pores were reserved in the matrix during the ultra-fast solidification process. The increased grain boundaries and pores (nanoscale to micron scale) enhanced phonon scattering, which greatly decreased the lattice thermal conductivity. The obtained minimum lattice thermal conductivity is 0.81 W m-1 K-1, and the maximum zT value is 0.5 (873 K), which is comparable to the best reported results of the undoped SnTe alloy. The ultra-fast non-equilibrium synthesis technique opens up new possibilities to prepare high-efficiency bulk thermoelectric materials with reduced time and energy consumption.

2.
ACS Appl Mater Interfaces ; 15(20): 24880-24891, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37184365

RESUMO

The enhancement of the heat-dissipation property of polymer-based composites is of great practical interest in modern electronics. Recently, the construction of a three-dimensional (3D) thermal pathway network structure for composites has become an attractive way. However, for most reported high thermal conductive composites, excellent properties are achieved at a high filler loading and the building of a 3D network structure usually requires complex steps, which greatly restrict the large-scale preparation and application of high thermal conductive polymer-based materials. Herein, utilizing the framework-forming characteristic of polymerization-induced para-aramid nanofibers (PANF) and the high thermal conductivity of hexagonal boron nitride nanosheets (BNNS), a 3D-laminated PANF-supported BNNS aerogel was successfully prepared via a simple vacuum-assisted self-stacking method, which could be used as a thermal conductive skeleton for epoxy resin (EP). The obtained PANF-BNNS/EP nanocomposite exhibits a high thermal conductivity of 3.66 W m-1 K-1 at only 13.2 vol % BNNS loading. The effectiveness of the heat conduction path was proved by finite element analysis. The PANF-BNNS/EP nanocomposite shows outstanding practical thermal management capability, excellent thermal stability, low dielectric constant, and dielectric loss, making it a reliable material for electronic packaging applications. This work also offers a potential and promotable strategy for the easy manufacture of 3D anisotropic high-efficiency thermal conductive network structures.

3.
Nanomaterials (Basel) ; 9(2)2019 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-30781505

RESUMO

Here we report the fabrication of graphene oxide (GO)-based membranes covalently combined with bovine serum albumin (BSA) for metal ions detection. In this system, BSA acts as a transporter protein in the membrane and endows the membrane with selective recognition of Co2+, Cu2+, AuCl4-, and Fe2+. Combining the metal-binding ability of BSA and the large surface area of GO, the hybrid membrane can be used as a water purification strategy to selectively absorb a large amount of AuCl4- from HAuCl4 solution. Moreover, BSA could reduce the membrane-immobilized AuCl4- by adding sodium borohydride (NaBH4). Interestingly, adsorption experiments on three kinds of metal ions showed that the GO⁻BSA membrane had good selective adsorption of Co2+ compared with Cu2+ and Fe2+. The morphology and composition changes of the membrane were observed with atomic force microscopy (AFM) and Raman spectroscopy, respectively. It is expected that this facile strategy for fabricating large-scale graphene-biomolecule membranes will spark inspirations in the development of functional nanomaterials and wastewater purification.

4.
Curr Med Chem ; 25(16): 1920-1944, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29345568

RESUMO

The conjugation of gold nanoparticles (AuNPs) with biomolecules could create many outstanding biofunctions for the surface-functionalized nanoparticles and extend their biomedical applications. In this review, we summarize the recent advances in the surface bioengineering of AuNPs with biomolecules, such as DNA, proteins, peptides, and biopolymers, in which the details on the structure, functions, and properties of surface- bioengineered AuNPs are discussed. In addition, the surface-biofunctionalization of AuNPs for biomedical applications like biosensing, bioimaging, drug delivery, and tissue engineering are introduced. It is expected that this work will be very helpful for readers to understand the surface functionalization and engineering techniques for various metallic nanoparticles and design novel biomaterials for biomedical applications.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Animais , Bioengenharia , Biopolímeros/química , Técnicas Biossensoriais/métodos , DNA/química , Diagnóstico por Imagem/métodos , Sistemas de Liberação de Medicamentos/métodos , Humanos , Nanomedicina , Tamanho da Partícula , Peptídeos/química , Proteínas/química , Propriedades de Superfície , Engenharia Tecidual/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA