Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(5)2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33803482

RESUMO

Alzheimer's disease (AD) is the most common form of dementia. In particular, neuroinflammation, mediated by microglia cells but also through CD8+ T-cells, actively contributes to disease pathology. Leukotrienes are involved in neuroinflammation and in the pathological hallmarks of AD. In consequence, leukotriene signaling-more specifically, the leukotriene receptors-has been recognized as a potential drug target to ameliorate AD pathology. Here, we analyzed the effects of the leukotriene receptor antagonist montelukast (MTK) on hippocampal gene expression in 5xFAD mice, a commonly used transgenic AD mouse model. We identified glial activation and neuroinflammation as the main pathways modulated by MTK. The treatment increased the number of Tmem119+ microglia and downregulated genes related to AD-associated microglia and to lipid droplet-accumulating microglia, suggesting that the MTK treatment targets and modulates microglia phenotypes in the disease model compared to the vehicle. MTK treatment further reduced infiltration of CD8+T-cells into the brain parenchyma. Finally, MTK treatment resulted in improved cognitive functions. In summary, we provide a proof of concept for MTK to be a potential drug candidate for AD and provide novel modes of action via modulation of microglia and CD8+ T-cells. Of note, 5xFAD females showed a more severe pathology, and in consequence, MTK treatment had a more pronounced effect in the females compared to the males. The effects on neuroinflammation, i.e., microglia and CD8+ T-cells, as well as the effects on cognitive outcome, were dose-dependent, therefore arguing for the use of higher doses of MTK in AD clinical trials compared to the approved asthma dose.


Assuntos
Acetatos/farmacologia , Doença de Alzheimer/tratamento farmacológico , Encéfalo/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Cognição/efeitos dos fármacos , Ciclopropanos/farmacologia , Antagonistas de Leucotrienos/farmacologia , Quinolinas/farmacologia , Sulfetos/farmacologia , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Encéfalo/patologia , Linfócitos T CD8-Positivos/patologia , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/patologia , Camundongos , Camundongos Transgênicos
2.
Neurobiol Dis ; 124: 93-107, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30445024

RESUMO

The development and characterization of new improved animal models is pivotal in Alzheimer's Disease (AD) research, since valid models enable the identification of early pathological processes, which are often not accessible in patients, as well as subsequent target discovery and evaluation. The TgF344-AD rat model of AD, bearing mutant human amyloid precursor protein (APPswe) and Presenilin 1 (PSEN1ΔE9) genes, has been described to manifest the full spectrum of AD pathology similar to human AD, i.e. progressive cerebral amyloidosis, tauopathy, neuronal loss and age-dependent cognitive decline. Here, AD-related pathology in female TgF344-AD rats was examined longitudinally between 6 and 18 months by means of complementary translational MRI techniques: resting state functional MRI (rsfMRI) to evaluate functional connectivity (FC) and diffusion tensor imaging (DTI) to assess the microstructural integrity. Additionally, an evaluation of macroscopic changes (3D anatomical MRI) and an image-guided validation of ex vivo pathology were performed. We identified slightly decreased FC at 6 months followed by severe and widespread hypoconnectivity at 10 months of age as the earliest detectable pathological MRI hallmark. This initial effect was followed by age-dependent progressive microstructural deficits in parallel with age-dependent ex vivo AD pathology, without signs of macroscopic alterations such as hippocampal atrophy. This longitudinal MRI study in the TgF344-AD rat model of AD revealed early rsfMRI and DTI abnormalities as seen in human AD patients. The characterization of AD pathology in this rat model using non-invasive MRI techniques further highlights the translational value of this model, as well as its use for potential treatment evaluation.


Assuntos
Doença de Alzheimer/patologia , Doença de Alzheimer/fisiopatologia , Encéfalo/patologia , Encéfalo/fisiopatologia , Doença de Alzheimer/diagnóstico por imagem , Precursor de Proteína beta-Amiloide/genética , Animais , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Modelos Animais de Doenças , Feminino , Estudos Longitudinais , Imageamento por Ressonância Magnética , Vias Neurais/diagnóstico por imagem , Vias Neurais/patologia , Vias Neurais/fisiopatologia , Presenilina-1/genética , Ratos Endogâmicos F344 , Ratos Transgênicos
3.
Front Mol Biosci ; 7: 610132, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33392263

RESUMO

The emergence and global impact of COVID-19 has focused the scientific and medical community on the pivotal influential role of respiratory viruses as causes of severe pneumonia, on the understanding of the underlying pathomechanisms, and on potential treatment for COVID-19. The latter concentrates on four different strategies: (i) antiviral treatments to limit the entry of the virus into the cell and its propagation, (ii) anti-inflammatory treatment to reduce the impact of COVID-19 associated inflammation and cytokine storm, (iii) treatment using cardiovascular medication to reduce COVID-19 associated thrombosis and vascular damage, and (iv) treatment to reduce the COVID-19 associated lung injury. Ideally, effective COVID-19 treatment should target as many of these mechanisms as possible arguing for the search of common denominators as potential drug targets. Leukotrienes and their receptors qualify as such targets: they are lipid mediators of inflammation and tissue damage and well-established targets in respiratory diseases like asthma. Besides their role in inflammation, they are involved in various other aspects of lung pathologies like vascular damage, thrombosis, and fibrotic response, in brain and retinal damages, and in cardiovascular disease. In consequence, leukotriene receptor antagonists might be potential candidates for COVID-19 therapeutics. This review summarizes the current knowledge on the potential involvement of leukotrienes in COVID-19, and the rational for the use of the leukotriene receptor antagonist montelukast as a COVID-19 therapeutic.

4.
Pharmaceutics ; 13(1)2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-33374646

RESUMO

The leukotriene receptor antagonist Montelukast (MTK) is an approved medication for the treatment of asthma and allergic rhinitis. The existing marketed tablet forms of MTK exhibit inconsistent uptake and bioavailability, which partially explains the presence of a significant proportion of MTK low- and non-responders in the population. Besides that, tablets are suboptimal formulations for patients suffering from dysphagia, for example, seen in patients with neurodegenerative diseases such as Alzheimer's disease, a disease with increasing interest in repurposing of MTK. This, and the need for an improved bioavailability, triggered us to reformulate MTK. Our aim was to develop a mucoadhesive MTK film with good safety and improved pharmacological features, i.e., an improved bioavailability profile in humans as well as in a mouse model of Alzheimer's disease. We tested dissolution of the MTK mucoadhesive film and assessed pharmacoexposure and kinetics after acute and chronic oral application in mice. Furthermore, we performed a Phase I analysis in humans, which included a comparison with the marketed tablet form as well as a quantitative analysis of the MTK levels in the cerebrospinal fluid. The novel MTK film demonstrated significantly improved bioavailability compared to the marketed tablet in the clinical Phase 1a study. Furthermore, there were measurable amounts of MTK present in the cerebrospinal fluid (CSF). In mice, MTK was detected in serum and CSF after acute and chronic exposure in a dose-dependent manner. The mucoadhesive film of MTK represents a promising alternative for the tablet delivery. The oral film might lower the non-responder rate in patients with asthma and might be an interesting product for repurposing of MTK in other diseases. As we demonstrate Blood-Brain-Barrier (BBB) penetrance in a preclinical model, as well as in a clinical study, the oral film of MTK might find its use as a therapeutic for acute and chronic neurodegenerative diseases such as dementias and stroke.

5.
Drug Discov Today ; 24(2): 505-516, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30240876

RESUMO

The underlying pathology of Alzheimer's disease (AD) is complex and includes, besides amyloid beta (Aß) plaque depositions and neurofibrillary tangles, brain atrophy and neurodegeneration, neuroinflammation, impaired neurogenesis, vascular and blood-brain barrier (BBB) disruptions, neurotransmitter disbalances, and others. Here, we hypothesize that such complex pathologies can only be targeted efficiently through pleiotropic approaches. One interesting drug target is the leukotriene pathway, which mediates various aspects of AD pathology. Approaching this pathway at different levels with genetic and pharmacological tools demonstrated beneficial outcomes in several in vivo studies using different mouse models of AD. Here, we review the current literature on the leukotriene signaling pathway as a target for drug development in AD.


Assuntos
Doença de Alzheimer/metabolismo , Leucotrienos/metabolismo , Doença de Alzheimer/terapia , Animais , Barreira Hematoencefálica/metabolismo , Morte Celular , Reposicionamento de Medicamentos , Humanos , Neurogênese , Neurônios/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA