Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Assist Reprod Genet ; 31(1): 115-20, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24174298

RESUMO

PURPOSE: The aim of this study was to characterise the methylation pattern in a CpG island of the IGF2 gene in cumulus cells from 1-3 mm and ≥ 8.0 mm follicles and to evaluate the effects of in vitro maturation on this pattern. METHODS: Genomic DNA was treatment with sodium bisulphite. Nested PCR using bisulphite-treated DNA was performed, and DNA methylation patterns have been characterised. RESULTS: There were no differences in the methylation pattern among groups (P > 0.05). Cells of pre-IVM and post-IVM from small follicles showed methylation levels of 78.17 ± 14.11 % and 82.93±5.86 %, respectively, and those from large follicles showed methylation levels of 81.81 ± 10.40 % and 79.64 ± 13.04 %, respectively. Evaluating only the effect of in vitro maturation, cells of pre-IVM and post-IVM COCs showed methylation levels of 80.17 ± 12.01 % and 81.19 ± 10.15 %. CONCLUSIONS: In conclusion, the methylation levels of the cumulus cells of all groups were higher than that expected from the imprinted pattern of somatic cells. As the cumulus cells from the pre-IVM follicles were not subjected to any in vitro manipulation, the hypermethylated pattern that was observed may be the actual physiological methylation pattern for this particular locus in these cells. Due the importance of DNA methylation in oogenesis, and to be a non-invasive method for determining oocyte quality, the identification of new epigenetic markers in cumulus cells has great potential to be used to support reproductive biotechniques in humans and other mammals.


Assuntos
Bovinos , Ilhas de CpG , Células do Cúmulo/metabolismo , Metilação de DNA , Técnicas de Maturação in Vitro de Oócitos , Fator de Crescimento Insulin-Like II/genética , Oogênese/genética , Animais , Bovinos/genética , Tamanho Celular , Células Cultivadas , Células do Cúmulo/citologia , Células do Cúmulo/fisiologia , Éxons , Técnicas de Maturação in Vitro de Oócitos/veterinária , Recuperação de Oócitos/veterinária , Oócitos/citologia , Oócitos/fisiologia
2.
Front Bioeng Biotechnol ; 10: 958486, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36017345

RESUMO

Spider silks are well known for their extraordinary mechanical properties. This characteristic is a result of the interplay of composition, structure and self-assembly of spider silk proteins (spidroins). Advances in synthetic biology have enabled the design and production of spidroins with the aim of biomimicking the structure-property-function relationships of spider silks. Although in nature only fibers are formed from spidroins, in vitro, scientists can explore non-natural morphologies including nanofibrils, particles, capsules, hydrogels, films or foams. The versatility of spidroins, along with their biocompatible and biodegradable nature, also placed them as leading-edge biological macromolecules for improved drug delivery and various biomedical applications. Accordingly, in this review, we highlight the relationship between the molecular structure of spider silk and its mechanical properties and aims to provide a critical summary of recent progress in research employing recombinantly produced bioengineered spidroins for the production of innovative bio-derived structural materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA