Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Exp Cell Res ; 405(1): 112629, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34023392

RESUMO

Fusion of cortical granules with oocyte plasma membrane is one of the most significant secretory events to prevent polyspermy during oocyte activation. Cortical granule exocytosis (CGE) is distinct from most other exocytosis because cortical granules are not renewed after secretion. However, it is thought to be mediated by SNARE complex, which mediates membrane fusion in other exocytoses. SNAREs proteins are divided into Q (glutamine)- and R (arginine)-SNAREs. Q-SNAREs include Syntaxins and SNAP25 family, and R-SNAREs include VAMPs family. In mouse oocytes, Syntaxin4 and SNAP23 have been involved in CGE; nevertheless, it is unknown if VAMP is required. Here, we demonstrated by RT-PCR and immunoblotting that VAMP1 and VAMP3 are expressed in mouse oocyte, and they localized in the cortical region of this cell. Using a functional assay to quantify CGE, we showed that tetanus toxin -which specifically cleavages VAMP1, VAMP2 or VAMP3- inhibited CGE suggesting that at least one VAMP was necessary. Function blocking assays demonstrated that only the microinjection of anti-VAMP1 or anti-VAMP3 antibodies abolished CGE in activated oocytes. These findings demonstrate that R-SNAREs sensitive to tetanus toxin, VAMP1 and VAMP3 -but not VAMP2-, are required for CGE and demonstrate that CGE is mediated by the SNARE complex.


Assuntos
Grânulos Citoplasmáticos/fisiologia , Exocitose , Regulação da Expressão Gênica/efeitos dos fármacos , Oócitos/fisiologia , Proteínas SNARE/metabolismo , Toxina Tetânica/farmacologia , Animais , Grânulos Citoplasmáticos/efeitos dos fármacos , Feminino , Camundongos , Neurotoxinas/farmacologia , Oócitos/citologia , Oócitos/efeitos dos fármacos , Proteínas SNARE/genética
2.
Theriogenology ; 229: 53-65, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39163803

RESUMO

In assisted fertility protocols, in vitro culture conditions mimic physiological conditions to preserve gametes in the best conditions. After collection, oocytes are maintained in a culture medium inside the incubator until in vitro fertilization (IVF) is performed. This time outside natural and physiological conditions exposes oocytes to an oxidative stress that renders in vitro aging. It has been described that in vitro aging produces a spontaneous cortical granule (CG) release decreasing the fertilization rate of oocytes. Nevertheless, this undesirable phenomenon has not been investigated, let alone prevented. In this work, we characterized the spontaneous CG secretion in in vitro aged oocytes. Using immunofluorescence indirect, quantification, and functional assays, we showed that the expression of regulatory proteins of CG exocytosis was affected. Our results demonstrated that in vitro oocyte aging by 4 and 8 h altered the expression and localization of alpha-SNAP and reduced the expression of NSF and Complexin. These alterations were prevented by supplementing culture medium with dithiothreitol (DTT), which in addition to having a protective effect on those proteins, also had an unexpected effect on the actin cytoskeleton. Indeed, DTT addition thickened the cortical layer of fibrillar actin. Both DTT effects, together, prevented the spontaneous secretion of CG and recovered the IVF rate in in vitro aged oocytes. We propose the use of DTT in culture media to avoid the spontaneous CG secretion and to improve the success rate of IVF protocols in in vitro aged oocytes.


Assuntos
Citoesqueleto de Actina , Ditiotreitol , Exocitose , Oócitos , Animais , Oócitos/efeitos dos fármacos , Exocitose/efeitos dos fármacos , Camundongos , Ditiotreitol/farmacologia , Citoesqueleto de Actina/efeitos dos fármacos , Citoesqueleto de Actina/metabolismo , Feminino , Grânulos Citoplasmáticos/metabolismo , Grânulos Citoplasmáticos/efeitos dos fármacos , Fertilização in vitro/veterinária , Senescência Celular/efeitos dos fármacos
3.
Artigo em Inglês | MEDLINE | ID: mdl-37929805

RESUMO

Actin remodeling is a critical regulator of mast cell secretion. In previous work, we have shown that dehydroleucodine and xanthatin, two natural α,ß-unsaturated lactones, exhibit anti-inflammatory and mast cell stabilizing properties. Based on this background, this study aimed to determine whether the mast cell stabilizing action of these lactones is associated with changes in the actin cytoskeleton. Rat peritoneal mast cells were preincubated in the presence of dehydroleucodine or xanthatin before incubation with compound 48/80. Comparative studies with sodium cromoglycate and latrunculin B were also made. After treatments, different assays were performed on mast cell samples: ß-hexosaminidase release, cell viability studies, quantification of mast cells and their state of degranulation by light microscopy, transmission electron microscopy, and actin staining for microscopy observation. Results showed that dehydroleucodine and xanthatin inhibited mast cell degranulation, evidenced by the inhibition of ß-hexosaminidase release and decreased degranulated mast cell percentage. At the same time, both lactones altered the F-actin cytoskeleton in mast cells resulting, similarly to Latrunculin B, in a higher concentration of nuclear F-actin when activated by compound 48/80. For the first time, this study describes the biological properties of dehydroleucodine and xanthatin concerning to the rearrangement of actin filaments during stimulated exocytosis in mast cells. These data have important implications for developing new anti-inflammatory and mast cell stabilizing drugs and for designing new small molecules that may interact with the actin cytoskeleton.

4.
Sci Rep ; 9(1): 17374, 2019 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-31758001

RESUMO

After sperm-oocyte fusion, cortical granules (CGs) located in oocyte cortex undergo exocytosis and their content is released into the perivitelline space to avoid polyspermy. Thus, cortical granule exocytosis (CGE) is a key process for fertilization success. We have demonstrated that alpha-SNAP -and its functional partner NSF- mediate fusion of CGs with the plasma membrane in mouse oocytes. Here, we examined at cellular and ultrastructural level oocytes from hyh (hydrocephalus with hop gait) mice, which present a missense mutation in the Napa gene that results in the substitution of methionine for isoleucine at position 105 (M105I) of alpha-SNAP. Mutated alpha-SNAP was mislocalized in hyh oocytes while NSF expression increased during oocyte maturation. Staining of CGs showed that 9.8% of hyh oocytes had abnormal localization of CGs and oval shape. Functional tests showed that CGE was impaired in hyh oocytes. Interestingly, in vitro fertilization assays showed a decreased fertilization rate for hyh oocytes. Furthermore, fertilized hyh oocytes presented an increased polyspermy rate compared to wild type ones. At ultrastructural level, hyh oocytes showed small mitochondria and a striking accumulation and secretion of degradative structures. Our findings demonstrate the negative effects of alpha-SNAP M105 mutation on oocyte biology and further confirm the relevance of alpha-SNAP in female fertility.


Assuntos
Infertilidade Feminina/genética , Mutação de Sentido Incorreto , Oócitos/citologia , Oócitos/fisiologia , Oogênese/genética , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/genética , Substituição de Aminoácidos/genética , Animais , Feminino , Fertilidade/genética , Fertilização/genética , Homozigoto , Isoleucina/genética , Masculino , Metáfase/genética , Metionina/genética , Camundongos , Camundongos Transgênicos , Oócitos/ultraestrutura
5.
PLoS One ; 10(8): e0135679, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26267363

RESUMO

Cortical granule exocytosis (CGE), also known as cortical reaction, is a calcium- regulated secretion that represents a membrane fusion process during meiotic cell division of oocytes. The molecular mechanism of membrane fusion during CGE is still poorly understood and is thought to be mediated by the SNARE pathway; nevertheless, it is unkown if SNAP (acronym for soluble NSF attachment protein) and NSF (acronym for N-ethilmaleimide sensitive factor), two key proteins in the SNARE pathway, mediate CGE in any oocyte model. In this paper, we documented the gene expression of α-SNAP, γ-SNAP and NSF in mouse oocytes. Western blot analysis showed that the expression of these proteins maintains a similar level during oocyte maturation and early activation. Their localization was mainly observed at the cortical region of metaphase II oocytes, which is enriched in cortical granules. To evaluate the function of these proteins in CGE we set up a functional assay based on the quantification of cortical granules metaphase II oocytes activated parthenogenetically with strontium. Endogenous α-SNAP and NSF proteins were perturbed by microinjection of recombinant proteins or antibodies prior to CGE activation. The microinjection of wild type α-SNAP and the negative mutant of α-SNAP L294A in metaphase II oocytes inhibited CGE stimulated by strontium. NEM, an irreversibly inhibitor of NSF, and the microinjection of the negative mutant NSF D1EQ inhibited cortical reaction. The microinjection of anti-α-SNAP and anti-NSF antibodies was able to abolish CGE in activated metaphase II oocytes. The microinjection of anti-γ SNAP antibody had no effect on CGE. Our findings indicate, for the first time in any oocyte model, that α-SNAP, γ-SNAP, and NSF are expressed in mouse oocytes. We demonstrate that α-SNAP and NSF have an active role in CGE and propose a working model.


Assuntos
Exocitose/fisiologia , Proteínas Sensíveis a N-Etilmaleimida/metabolismo , Oócitos/metabolismo , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/metabolismo , Animais , Exocitose/genética , Feminino , Fertilização in vitro , Camundongos , Proteínas Sensíveis a N-Etilmaleimida/genética , Oócitos/citologia , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA