Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Exp Pathol ; 104(2): 64-75, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36694990

RESUMO

By depriving cancer cells of blood supplies of oxygen and nutrients, anti-angiogenic therapy is aimed at simultaneously asphyxiating and starving the cells. But in spite of its apparent logic, this strategy is generally counterproductive over the long term as the treatment seems to elicit malignancy. Since a defect of blood supply is expected to deprive tumours simultaneously of oxygen and nutrients naturally, we examine here these two deprivations, alone or in combination, on the phenotype and signalling pathways of moderately aggressive MCF7 cancer cells. Each deprivation induces some aspects of the aggressive and migratory phenotypes through activating several pathways, including HIF1-alpha as expected, but also SRF/MRTFA and TCF4/beta-catenin. Strikingly, the dual deprivation has strong cooperative effects on the upregulation of genes increasing the metastatic potential, such as four and a half LIM domains 2 (FHL2) and HIF1A-AS2 lncRNA, which have response elements for both pathways. Using anti-angiogenic agents as monotherapy is therefore questionable as it may give falsely promising short-term tumour regression, but could ultimately exacerbate aggressive phenotypes.


Assuntos
Oxigênio , Transdução de Sinais , Humanos , Células MCF-7 , Transição Epitelial-Mesenquimal/fisiologia , Invasividade Neoplásica , Linhagem Celular Tumoral , Movimento Celular , Regulação Neoplásica da Expressão Gênica
2.
Phys Chem Chem Phys ; 19(7): 5273-5284, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-28149987

RESUMO

A full equilibrium treatment of molecular aggregation is presented for prototypes of 1D and 3D aggregates, with and without nucleation. By skipping complex kinetic parameters like aggregate size-dependent diffusion, the equilibrium treatment allows us to predict directly time-independent quantities such as critical concentrations. The relationships between the macroscopic equilibrium constants for different paths are first established by statistical corrections and so as to comply with the detailed balance constraints imposed by nucleation, and the composition of the mixture resulting from homogeneous aggregation is then analyzed using a polylogarithmic function. Several critical concentrations are distinguished: the residual monomer concentration at equilibrium (RMC) and the critical nucleation concentration (CNC), which is the threshold concentration of total subunits necessary for initiating aggregation. When increasing the concentration of total subunits, the RMC converges more strongly to its asymptotic value, the equilibrium constant of depolymerization, for 3D aggregates and in the case of nucleation. The CNC moderately depends on the number of subunits in the nucleus, but sharply increases with the difference between the equilibrium constants of polymerization and nucleation. As the RMC and CNC can be numerically but not analytically determined, ansatz equations connecting them to thermodynamic parameters are proposed.

3.
Biochem J ; 461(2): 257-68, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24762104

RESUMO

In addition to soluble factors, mechanical constraints and extracellular matrix stiffness are important regulators of cell fate that are mediated by cytoskeletal modifications. The EMT (epithelial-mesenchymal transition) that occurs during normal development and malignant progression is a typical example of the phenotypic switch associated with profound actin remodelling and changes in gene expression. For instance, actin dynamics control motile cell functions in EMT, in part, through regulating the subcellular localization of the myocardin-related transcription factor MKL1 (megakaryoblastic leukaemia translocation 1), a co-activator of SRF (serum-responsive factor). In the present paper, we show that MKL1 participates also to the control of the cellular switch between growth and quiescence. Experimental disconnection between MKL1 and G-actin (globular actin), by using an MKL1 mutant or enhancing the F (filamentous)-/G-actin ratio, generates a widely open chromatin state and a global increase in biosynthetic activity, classically associated with cell growth. Conversely, G-actin accumulation favours nuclear condensation and cell quiescence. These large-scale chromatin changes rely upon extensive histone modifications, exemplified by that of H3K9 (H3 Lys9) shifting from trimethylation, a heterochromatin mark, to acetylation, a mark of euchromatin. The present study provides the first evidence for a global reversible hetero/euchromatinization phenomenon triggered by the actin/MKL1 signalling pathway.


Assuntos
Actinas/metabolismo , Montagem e Desmontagem da Cromatina , Proteínas de Ligação a DNA/metabolismo , Histonas/metabolismo , Proteínas de Fusão Oncogênica/metabolismo , Processamento de Proteína Pós-Traducional , Acetilação , Actinas/genética , Linhagem Celular Tumoral , Proliferação de Células , Cromatina/química , Proteínas de Ligação a DNA/genética , Transição Epitelial-Mesenquimal/genética , Expressão Gênica , Histonas/genética , Humanos , Metilação , Proteínas de Fusão Oncogênica/genética , Transdução de Sinais , Transativadores
4.
Biol Cell ; 105(12): 576-84, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24111561

RESUMO

Epigenetics is most often reduced to chromatin marking in the current literature, whereas this notion was initially defined in a more general context. This restricted view ignores that epigenetic memories are in fact more robustly ensured in living systems by steady-state mechanisms with permanent molecule renewal. This misconception is likely to result from misleading intuitions and insufficient dialogues between traditional and quantitative biologists. To demystify dynamic epigenetics, its most famous image, a Waddington landscape and its attractors, are explicitly drawn. The simple example provided, is sufficient to highlight the main requirements and characteristics of dynamic gene networks, underlying cellular differentiation, de-differentiation and trans-differentiation.


Assuntos
Epigênese Genética , Animais , Diferenciação Celular , Cromatina/metabolismo , Humanos
5.
J Theor Biol ; 325: 62-75, 2013 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-23454080

RESUMO

The quasi-equilibrium approximation is acceptable when molecular interactions are fast enough compared to circuit dynamics, but is no longer allowed when cellular activities are governed by rare events. A typical example is the lactose operon (lac), one of the most famous paradigms of transcription regulation, for which several theories still coexist to describe its behaviors. The lac system is generally analyzed by using equilibrium constants, contradicting single-event hypotheses long suggested by Novick and Weiner (1957). Enzyme induction as an all-or-none phenomenon. Proc. Natl. Acad. Sci. USA 43, 553-566) and recently refined in the study of (Choi et al., 2008. A stochastic single-molecule event triggers phenotype switching of a bacterial cell. Science 322, 442-446). In the present report, a lac repressor (LacI)-mediated DNA immunoprecipitation experiment reveals that the natural LacI-lac DNA complex built in vivo is extremely tight and long-lived compared to the time scale of lac expression dynamics, which could functionally disconnect the abortive expression bursts and forbid using the standard modes of lac bistability. As alternatives, purely kinetic mechanisms are examined for their capacity to restrict induction through: (i) widely scattered derepression related to the arrival time variance of a predominantly backward asymmetric random walk and (ii) an induction threshold arising in a single window of derepression without recourse to nonlinear multimeric binding and Hill functions. Considering the complete disengagement of the lac repressor from the lac promoter as the probabilistic consequence of a transient stepwise mechanism, is sufficient to explain the sigmoidal lac responses as functions of time and of inducer concentration. This sigmoidal shape can be misleadingly interpreted as a phenomenon of equilibrium cooperativity classically used to explain bistability, but which has been reported to be weak in this system.


Assuntos
Óperon Lac/genética , Modelos Genéticos , Animais , Repressores Lac/genética , Processos Estocásticos , beta-Galactosidase/metabolismo
6.
Cell Mol Life Sci ; 69(13): 2189-203, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22331281

RESUMO

A hallmark of living systems is the management and the storage of information through genetic and epigenetic mechanisms. Although the notion of epigenetics was originally given to any regulation beyond DNA sequence, it has often been restricted to chromatin modifications, supposed to behave as cis-markers, specifying the sets of genes to be expressed or repressed. This definition does not take into account the initial view of epigenetics, based on nonlinear interaction networks whose "attractors" can remain stable without need for any chromatin mark. In addition, most chromatin modifications are the steady state resultants of highly dynamic modification and de-modification activities and, as such, seem poorly appropriate to work as long-term memory keepers. Instead, the basic support of epigenetic memory could remain the attractors, to which chromatin modifications belong as do many other components. The influence of chromatin modifications in memory is highly questionable when envisioned as static structural marks, but can be recovered under the dynamic circuitry perspective, thanks to their self-templating properties. Beside their standard repressive or permissive functions, chromatin modifications can also influence transcription in multiple ways such as: (1) by randomizing or inversely stabilizing gene expression, (2) by mediating cooperativity between pioneer and secondary transcription factors, and (3) in the hysteresis and the ultrasensitivity of gene expression switches, allowing the cells to take unambiguous transcriptional decisions.


Assuntos
Evolução Biológica , Montagem e Desmontagem da Cromatina/fisiologia , Epigênese Genética/fisiologia , Regulação da Expressão Gênica/fisiologia , Redes Reguladoras de Genes/fisiologia , Modelos Genéticos , Cibernética
7.
Orig Life Evol Biosph ; 43(2): 137-50, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23625038

RESUMO

Acquiring information is indisputably energy-consuming and conversely, the availability of information permits greater efficiency. Strangely, the scientific community long remained reluctant to establish a physical equivalence between the abstract notion of information and sensible thermodynamics. However, certain physicists such as Szilard and Brillouin proposed: (i) to give to information the status of a genuine thermodynamic entity (k B T ln2 joules/bit) and (ii) to link the capacity of storing information inferred from correlated systems, to that of indefinitely increasing organization. This positive feedback coupled to the self-templating molecular potential could provide a universal basis for the spontaneous rise of highly organized structures, typified by the emergence of life from a prebiotic chemical soup. Once established, this mechanism ensures the longevity and robustness of life envisioned as a general system, by allowing it to accumulate and optimize microstate-reducing recipes, thereby giving rise to strong nonlinearity, decisional capacity and multistability. Mechanisms possibly involved in priming this cycle are proposed.


Assuntos
Evolução Biológica , Retroalimentação , Vida , Termodinâmica , Fenômenos Bioquímicos , Biologia Computacional , Entropia , Modelos Teóricos , Origem da Vida
8.
Mol Oncol ; 17(7): 1302-1323, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36808875

RESUMO

Oestrogen receptor-alpha (ERα) positivity is intimately associated with the development of hormone-dependent breast cancers. A major challenge in the treatment of these cancers is to understand and overcome the mechanisms of endocrine resistance. Recently, two distinct translation programmes using specific transfer RNA (tRNA) repertoires and codon usage frequencies were evidenced during cell proliferation and differentiation. Considering the phenotype switch of cancer cells to more proliferating and less-differentiated states, we can speculate that the changes in the tRNA pool and codon usage that likely occur make the ERα coding sequence no longer adapted, impacting translational rate, co-translational folding and the resulting functional properties of the protein. To verify this hypothesis, we generated an ERα synonymous coding sequence whose codon usage was optimized to the frequencies observed in genes expressed specifically in proliferating cells and then investigated the functional properties of the encoded receptor. We demonstrate that such a codon adaptation restores ERα activities to levels observed in differentiated cells, including: (a) an enhanced contribution exerted by transactivation function 1 (AF1) in ERα transcriptional activity; (b) enhanced interactions with nuclear receptor corepressor 1 and 2 [NCoR1 and NCoR2 (also known as SMRT) respectively], promoting repressive capability; and (c) reduced interactions with SRC proto-oncogene, non-receptor tyrosine kinase (Src) and phosphoinositide 3-kinase (PI3K) p85 kinases, inhibiting MAPK and AKT signalling pathway.


Assuntos
Neoplasias , Receptores de Estrogênio , Receptores de Estrogênio/metabolismo , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Mutação Silenciosa , Linhagem Celular Tumoral , Códon/genética , Neoplasias/genética
9.
Bioelectromagnetics ; 33(2): 147-58, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21812010

RESUMO

The main purpose of this study is to investigate potential responses of skin cells to millimeter wave (MMW) radiation increasingly used in the wireless technologies. Primary human skin cells were exposed for 1, 6, or 24 h to 60.4 GHz with an average incident power density of 1.8 mW/cm(2) and an average specific absorption rate of 42.4 W/kg. A large-scale analysis was performed to determine whether these exposures could affect the gene expression. Gene expression microarrays containing over 41,000 unique human transcript probe sets were used, and data obtained for sham and exposed cells were compared. No significant difference in gene expression was observed when gene expression values were subjected to a stringent statistical analysis such as the Benjamini-Hochberg procedure. However, when a t-test was employed to analyze microarray data, 130 transcripts were found to be potentially modulated after exposure. To further quantitatively analyze these preselected transcripts, real-time PCR was performed on 24 genes with the best combination of high fold change and low P-value. Five of them, namely CRIP2, PLXND1, PTX3, SERPINF1, and TRPV2, were confirmed as differentially expressed after 6 h of exposure. To the best of our knowledge, this is the first large-scale study reporting on potential gene expression modification associated with MMW radiation used in wireless communication applications.


Assuntos
Queratinócitos/fisiologia , Queratinócitos/efeitos da radiação , Micro-Ondas , Proteoma/metabolismo , Células Cultivadas , Relação Dose-Resposta à Radiação , Regulação da Expressão Gênica/fisiologia , Regulação da Expressão Gênica/efeitos da radiação , Genoma Humano/fisiologia , Genoma Humano/efeitos da radiação , Humanos , Masculino , Doses de Radiação
10.
Cancers (Basel) ; 14(19)2022 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-36230857

RESUMO

Estrogen receptor-alpha (ERα) is the driving transcription factor in 70% of breast cancers and its activity is associated with hormone dependent tumor cell proliferation and survival. Given the recurrence of hormone resistant relapses, understanding the etiological factors fueling resistance is of major clinical interest. Hypoxia, a frequent feature of the solid tumor microenvironment, has been described to promote endocrine resistance by triggering ERα down-regulation in both in vitro and in vivo models. Yet, the consequences of hypoxia on ERα genomic activity remain largely elusive. In the present study, transcriptomic analysis shows that hypoxia regulates a fraction of ERα target genes, underlying an important regulatory overlap between hypoxic and estrogenic signaling. This gene expression reprogramming is associated with a massive reorganization of ERα cistrome, highlighted by a massive loss of ERα binding sites. Profiling of enhancer acetylation revealed a hormone independent enhancer activation at the vicinity of genes harboring hypoxia inducible factor (HIFα) binding sites, the major transcription factors governing hypoxic adaptation. This activation counterbalances the loss of ERα and sustains hormone-independent gene expression. We describe hypoxia in luminal ERα (+) breast cancer as a key factor interfering with endocrine therapies, associated with poor clinical prognosis in breast cancer patients.

11.
Biophys J ; 101(7): 1557-68, 2011 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-21961581

RESUMO

Transcriptional memory of transient signals can be imprinted on living systems and influence their reactivity to repeated stimulations. Although they are classically ascribed to structural chromatin rearrangements in eukaryotes, such behaviors can also rely on dynamic memory circuits with sustained self-amplification loops. However, these phenomena are either of finite duration, or conversely associated to sustained phenotypic changes. A mechanism is proposed, in which only the responsiveness of the target gene is durably reset at a higher level after primary stimulation, using the celebrated but still puzzling vitellogenesis memory effect. The basic ingredients of this system are: 1), a positive autoregulation of the estrogen receptor α gene; 2), a strongly cooperative action of the estradiol receptor on vitellogenin expression; and 3), a variant isoform of the estradiol receptor with two autonomous transcription-activating modules, one of which is signal-independent and the other, signal-dependent. Realistic quantification supports the possibility of a multistationary situation in which ligand-independent activity is unable by itself to prime the amplification loop, but can click the system over a memory threshold after a primary stimulation. This ratchet transcriptional mechanism can have developmental and ecotoxicological importance and explain lifelong imprinting of past exposures without apparent phenotypic changes before restimulation and without need for persistent chromatin modifications.


Assuntos
Modelos Biológicos , Transcrição Gênica/genética , Vitelogênese/genética , Animais , Humanos , Estrutura Terciária de Proteína , Receptores de Estrogênio/química , Receptores de Estrogênio/metabolismo , Ativação Transcricional/genética , Vitelogeninas/genética
12.
J Theor Biol ; 287: 74-81, 2011 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-21821052

RESUMO

Chromatin remodeling machineries are abundant and diverse in eukaryotic cells but their importance in gene expression remains unclear. Although the influence of nucleosome position on the regulation of gene expression is generally envisioned under the equilibrium perspective, it is proposed that given the ATP-dependence of chromatin remodeling enzymes, certain mechanisms necessitate non-equilibrium treatments. In particular, examination of the celebrated chromatin remodeling system of the mouse mammary tumor virus, in which the binding of transcription factors opens the way to other ones, reveals that breaking equilibrium offers a subtle mode of transcription factor cooperativity, avoids molecular trapping phenomena and allows to reconcile previously conflicting experimental data. The mechanism proposed here provides a control lever of promoter sensitivity and responsiveness, increasing the discernment of gene expression.


Assuntos
Montagem e Desmontagem da Cromatina/genética , Regulação Viral da Expressão Gênica/genética , Vírus do Tumor Mamário do Camundongo/genética , Modelos Genéticos , Animais , Redes Reguladoras de Genes/genética , Camundongos , Fatores de Transcrição NFI/genética , Nucleossomos/genética , Regiões Promotoras Genéticas/genética , Receptores de Glucocorticoides/genética , Fatores de Transcrição/genética , Transcrição Gênica
13.
Mol Cell Endocrinol ; 530: 111282, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33894309

RESUMO

The Myocardin-related transcription factor A [MRTFA, also known as Megakaryoblastic Leukemia 1 (MKL1))] is a major actor in the epithelial to mesenchymal transition (EMT). We have previously shown that activation and nuclear accumulation of MRTFA mediate endocrine resistance of estrogen receptor alpha (ERα) positive breast cancers by initiating a partial transition from luminal to basal-like phenotype and impairing ERα cistrome and transcriptome. In the present study, we deepen our understanding of the mechanism by monitoring functional changes in the receptor's activity. We demonstrate that MRTFA nuclear accumulation down-regulates the expression of the unliganded (Apo-)ERα and causes a redistribution of the protein localization from its normal nuclear place to the entire cell volume. This phenomenon is accompanied by a shift in Apo-ERα monomer/dimer ratio towards the monomeric state, leading to significant functional consequences on ERα activities. In particular, the association of Apo-ERα with chromatin is drastically decreased, and the remaining ERα binding sites are substantially less enriched in ERE motifs than in control conditions. Monitored by proximity Ligation Assay, ERα interactions with P160 family coactivators are partly impacted when MRTFA accumulates in the nucleus, and those with SMRT and NCOR1 corepressors are abolished. Finally, ERα interactions with kinases such as c-src and PI3K are increased, thereby enhancing MAP Kinase and AKT activities. In conclusion, the activation and nuclear accumulation of MRTFA in ERα positive breast cancer cells remodels both ERα location and functions by shifting its activity from nuclear genome regulation to extra-nuclear non-genomic signaling.


Assuntos
Neoplasias da Mama/metabolismo , Núcleo Celular/metabolismo , Receptor alfa de Estrogênio/metabolismo , Transativadores/genética , Transativadores/metabolismo , Sítios de Ligação , Neoplasias da Mama/genética , Cromatina/metabolismo , Transição Epitelial-Mesenquimal , Receptor alfa de Estrogênio/química , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Células MCF-7 , Transporte Proteico
14.
J Mol Biol ; 432(7): 2253-2270, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32105732

RESUMO

The baseline level of transcription, which is variable and difficult to quantify, seriously complicates the normalization of comparative transcriptomic data, but its biological importance remains unappreciated. We show that this currently neglected ingredient is essential for controlling gene network multistability and therefore cellular differentiation. Basal expression is correlated to the degree of chromatin loosening measured by DNA accessibility and systematically leads to cellular dedifferentiation as assessed by transcriptomic signatures, irrespective of the molecular and cellular tools used. Modeling gene network motifs formally involved in developmental bifurcations reveals that the epigenetic landscapes of Waddington are restructured by the level of nonspecific expression, such that the attractors of progenitor and differentiated cells can be mutually exclusive. This mechanism is universal and holds beyond the particular nature of the genes involved, provided the multistable circuits are correctly described with autonomous basal expression. These results explain the relationships long established between gene expression noise, chromatin decondensation and cellular dedifferentiation, and highlight how heterochromatin maintenance is essential for preventing pathological cellular reprogramming, age-related diseases, and cancer.


Assuntos
Diferenciação Celular , Reprogramação Celular , Cromatina/metabolismo , Epigenômica , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Transativadores/metabolismo , Acetilação , Linhagem da Célula , Cromatina/genética , Células HeLa , Humanos , Transativadores/genética
15.
Biochim Biophys Acta Gene Regul Mech ; 1863(5): 194507, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32113984

RESUMO

Estrogen receptor (ERα) is central in driving the development of hormone-dependent breast cancers. A major challenge in treating these cancers is to understand and overcome endocrine resistance. The Megakaryoblastic Leukemia 1 (MKL1, MRTFA) protein is a master regulator of actin dynamic and cellular motile functions, whose nuclear translocation favors epithelial-mesenchymal transition. We previously demonstrated that nuclear accumulation of MKL1 in estrogen-responsive breast cancer cell lines promotes hormonal escape. In the present study, we confirm through tissue microarray analysis that nuclear immunostaining of MKL1 is associated with endocrine resistance in a cohort of breast cancers and we decipher the underlining mechanisms using cell line models. We show through gene expression microarray analysis that the nuclear accumulation of MKL1 induces dedifferentiation leading to a mixed luminal/basal phenotype and suppresses estrogen-mediated control of gene expression. Chromatin immunoprecipitation of DNA coupled to high-throughput sequencing (ChIP-Seq) shows a profound reprogramming in ERα cistrome associated with a massive loss of ERα binding sites (ERBSs) generally associated with lower ERα-binding levels. Novel ERBSs appear to be associated with EGF and RAS signaling pathways. Collectively, these results highlight a major role of MKL1 in the loss of ERα transcriptional activity observed in certain cases of endocrine resistances, thereby contributing to breast tumor cells malignancy.


Assuntos
Neoplasias da Mama/metabolismo , Núcleo Celular/metabolismo , Receptor alfa de Estrogênio/metabolismo , Regulação Neoplásica da Expressão Gênica , Transativadores/metabolismo , Transporte Ativo do Núcleo Celular , Neoplasias da Mama/genética , Estrogênios/metabolismo , Feminino , Humanos , Células MCF-7 , Ligação Proteica
16.
Cell Biol Toxicol ; 25(5): 471-8, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18685816

RESUMO

Millimeter waves (MMW) at frequencies around 60 GHz will be used in the very near future in the emerging local wireless communication systems and the potential health hazards of artificially induced environmental exposures represent a major public concern. The main aim of this study was to investigate the potential effects of low-power MMW radiations on cellular physiology. To this end, the human glial cell line, U-251 MG, was exposed to 60.4 GHz radiation at a power density of 0.14 mW/cm(2) and potential effect of MMW radiations on endoplasmic reticulum (ER) stress was investigated. ER is very sensitive to environmental insults and its homeostasis is altered in various pathologies. Through several assay systems, we found that exposure to 60.4 GHz does not modify ER protein folding and secretion, nor induces XBP1 or ATF6 transcription factors maturation. Moreover, expression of ER-stress sensor, BiP/GRP78 was examined by real-time PCR, in exposed or non-exposed cells to MMW radiations. Our data demonstrated the absence of significant changes in mRNA levels for BiP/GRP78. Our results showed that ER homeostasis does not undergo any modification at molecular level after exposure to low-power MMW radiation at 60.4 GHz. This report is the first study of ER-stress induction by MMW radiations.


Assuntos
Retículo Endoplasmático/efeitos da radiação , Ondas de Rádio , Sequência de Bases , Primers do DNA , Retículo Endoplasmático/metabolismo , Chaperona BiP do Retículo Endoplasmático , Homeostase/efeitos da radiação , Humanos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição/metabolismo
17.
Bioelectromagnetics ; 30(5): 365-73, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19274636

RESUMO

The main purpose of this article is to study potential biological effects of low-power millimeter waves (MMWs) on endoplasmic reticulum (ER), an organelle sensitive to a wide variety of environmental insults and involved in a number of pathologies. We considered exposure frequencies around 60 GHz in the context of their near-future applications in wireless communication systems. Radiations within this frequency range are strongly absorbed by oxygen molecules, and biological species have never been exposed to such radiations in natural environmental conditions. A set of five discrete frequencies has been selected; three of them coincide with oxygen spectral lines (59.16, 60.43, and 61.15 GHz) and two frequencies correspond to the spectral line overlap regions (59.87 and 60.83 GHz). Moreover, we used a microwave spectroscopy approach to select eight frequencies corresponding to the spectral lines of various molecular groups within 59-61 GHz frequency range. The human glial cell line, U-251 MG, was exposed or sham-exposed for 24 h with a peak incident power density of 0.14 mW/cm(2). The average specific absorption rate (SAR) within the cell monolayer ranges from 2.64 +/- 0.08 to 3.3 +/- 0.1 W/kg depending on the location of the exposed well. We analyzed by quantitative reverse transcription-polymerase chain reaction (RT-PCR) the level of expression of two endogenous ER-stress biomarkers, namely, the chaperones BiP/GRP78 and ORP150/GRP170. It was found that exposure to low-power MMW does not significantly modify the mRNA levels of these stress-sensitive genes suggesting that ER homeostasis is not altered by low-power MMW at the considered frequencies.


Assuntos
Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/efeitos da radiação , Ondas de Rádio/efeitos adversos , Estresse Fisiológico/genética , Animais , Linhagem Celular Tumoral , Chaperona BiP do Retículo Endoplasmático , Exposição Ambiental , Proteínas de Choque Térmico/genética , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Estresse Fisiológico/efeitos da radiação , Telecomunicações , Ativação Transcricional/efeitos da radiação
18.
Biophys Chem ; 129(2-3): 284-8, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17643734

RESUMO

The sigmoid shape of equilibrium curves in normal axes and Hill coefficients higher than unity, are indexes of cooperativity or homotropic allostery where the affinity for the ligand increases as saturation progresses. The mathematical transformation of the Adair scheme of equilibria in the Hill plot, reveals that sigmoid binding curves can also be generated by ordered ligand binding to a receptor with multiple binding sites of identical microscopic association constants. This mechanism only based on the law of mass action, could participate to some extent to certain cooperative effects observed in non-biological systems and perhaps in the physiological binding of oxygen to heme proteins.


Assuntos
Hemeproteínas/química , Modelos Químicos , Oxigênio/química , Sítios de Ligação , Ligantes , Computação Matemática
19.
Biochem J ; 395(1): 223-31, 2006 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-16336210

RESUMO

Clusterin is a secreted protein chaperone up-regulated in several pathologies, including cancer and neurodegenerative diseases. The present study shows that accumulation of aberrant proteins, caused by the proteasome inhibitor MG132 or the incorporation of the amino acid analogue AZC (L-azetidine-2-carboxylic acid), increased both clusterin protein and mRNA levels in the human glial cell line U-251 MG. Consistently, MG132 treatment was capable of stimulating a 1.3 kb clusterin gene promoter. Promoter deletion and mutation studies revealed a critical MG132-responsive region between -218 and -106 bp, which contains a particular heat-shock element, named CLE for 'clusterin element'. Gel mobility-shift assays demonstrated that MG132 and AZC treatments induced the formation of a protein complex that bound to CLE. As shown by supershift and chromatin-immunoprecipitation experiments, CLE is bound by HSF1 (heat-shock factor 1) and HSF2 upon proteasome inhibition. Furthermore, co-immunoprecipitation assays indicated that these two transcription factors interact. Gel-filtration analyses revealed that the HSF1-HSF2 heterocomplexes bound to CLE after proteasome inhibition have the same apparent mass as HSF1 homotrimers after heat shock, suggesting that HSF1 and HSF2 could heterotrimerize. Therefore these studies indicate that the clusterin is a good candidate to be part of a cellular defence mechanism against neurodegenerative diseases associated with misfolded protein accumulation or decrease in proteasome activity.


Assuntos
Clusterina/genética , Clusterina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição/metabolismo , Regulação para Cima/genética , Animais , Ácido Azetidinocarboxílico/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Fatores de Transcrição de Choque Térmico , Humanos , Leupeptinas/farmacologia , Complexos Multiproteicos/metabolismo , Inibidores de Proteassoma , Ligação Proteica/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Elementos Reguladores de Transcrição/genética , Células Tumorais Cultivadas
20.
Biochim Biophys Acta Gene Regul Mech ; 1860(2): 184-195, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27876670

RESUMO

Despite their dynamic nature, certain chromatin marks must be maintained over the long term. This is particulary true for histone 3 lysine 9 (H3K9) trimethylation, that is involved in the maintenance of healthy differentiated cellular states by preventing inappropriate gene expression, and has been recently identified as the most efficient barrier to cellular reprogramming in nuclear transfer experiments. We propose that the capacity of the enzymes SUV39H1/2 to rebind to a minor fraction of their products, either directly or via HP1α/ß, contributes to the solidity of this mark through (i) a positive feedback involved in its establishment by the mutual enforcement of H3K9me3 and SUV39H1/2 and then (ii) a negative feedback sufficient to strongly stabilize H3K9me3 heterochromatin in post-mitotic cells by generating local enzyme concentrations capable of counteracting transient bursts of demethylation. This model does not require direct molecular interactions with adjacent nucleosomes and is favoured by a series of additional mechanisms including (i) the protection of chromatin-bound SUV39H1/2 from the turnovers of soluble proteins, which can explain the uncoupling between the cellular contents in SUV39H1 mRNA and protein; (ii) the cooperative dependence on the local density of the H3K9me3 of HP1α/ß-dependent heterochomatin condensation and, dispensably (iii) restricted enzyme exchanges with chromocenters confining the reactive bursts of SUV39H1/2 in heterochromatin. This mechanism illustrates how seemingly static epigenetic states can be firmly maintained by dynamic and reversible modifications.


Assuntos
Heterocromatina/metabolismo , Heterocromatina/fisiologia , Histonas/metabolismo , Diferenciação Celular , Linhagem Celular Tumoral , Homólogo 5 da Proteína Cromobox , Proteínas Cromossômicas não Histona/metabolismo , Epigênese Genética/fisiologia , Células HeLa , Células Hep G2 , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Células MCF-7 , Metilação , Nucleossomos/metabolismo , Nucleossomos/fisiologia , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA