Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 574(7778): 372-377, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31619789

RESUMO

Diabetes is far more prevalent in smokers than non-smokers, but the underlying mechanisms of vulnerability are unknown. Here we show that the diabetes-associated gene Tcf7l2 is densely expressed in the medial habenula (mHb) region of the rodent brain, where it regulates the function of nicotinic acetylcholine receptors. Inhibition of TCF7L2 signalling in the mHb increases nicotine intake in mice and rats. Nicotine increases levels of blood glucose by TCF7L2-dependent stimulation of the mHb. Virus-tracing experiments identify a polysynaptic connection from the mHb to the pancreas, and wild-type rats with a history of nicotine consumption show increased circulating levels of glucagon and insulin, and diabetes-like dysregulation of blood glucose homeostasis. By contrast, mutant Tcf7l2 rats are resistant to these actions of nicotine. Our findings suggest that TCF7L2 regulates the stimulatory actions of nicotine on a habenula-pancreas axis that links the addictive properties of nicotine to its diabetes-promoting actions.


Assuntos
Transtornos do Metabolismo de Glucose/genética , Habenula/metabolismo , Transdução de Sinais , Tabagismo/complicações , Proteína 2 Semelhante ao Fator 7 de Transcrição/metabolismo , Animais , AMP Cíclico/metabolismo , Glucose/metabolismo , Transtornos do Metabolismo de Glucose/metabolismo , Humanos , Camundongos , Mutagênese , Nicotina/metabolismo , Células PC12 , Pâncreas/metabolismo , Ratos , Receptores Nicotínicos/metabolismo , Tabagismo/genética , Tabagismo/metabolismo , Proteína 2 Semelhante ao Fator 7 de Transcrição/genética
2.
Med Res Rev ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38808959

RESUMO

5-HT1A receptor (5-HT1A-R) is a serotoninergic G-protein coupled receptor subtype which contributes to several physiological processes in both central nervous system and periphery. Despite being the first 5-HT-R identified, cloned and studied, it still represents a very attractive target in drug discovery and continues to be the focus of a myriad of drug discovery campaigns due to its involvement in numerous neuropsychiatric disorders. The structure-activity relationship studies (SAR) performed over the last years have been devoted to three main goals: (i) design and synthesis of 5-HT1A-R selective/preferential ligands; (ii) identification of 5-HT1A-R biased agonists, differentiating pre- versus post-synaptic agonism and signaling cellular mechanisms; (iii) development of multitarget compounds endowed with well-defined poly-pharmacological profiles targeting 5-HT1A-R along with other serotonin receptors, serotonin transporter (SERT), D2-like receptors and/or enzymes, such as acetylcholinesterase and phosphodiesterase, as a promising strategy for the management of complex psychiatric and neurodegenerative disorders. In this review, medicinal chemistry aspects of ligands acting as selective/preferential or multitarget 5-HT1A-R agonists and antagonists belonging to different chemotypes and developed in the last 7 years (2017-2023) have been discussed. The development of chemical and pharmacological 5-HT1A-R tools for molecular imaging have also been described. Finally, the pharmacological interest of 5-HT1A-R and the therapeutic potential of ligands targeting this receptor have been considered.

3.
Int J Eat Disord ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38650547

RESUMO

OBJECTIVE: Binge-eating disorder is an eating disorder characterized by recurrent binge-eating episodes, during which individuals consume excessive amounts of highly palatable food (HPF) in a short time. This study investigates the intricate relationship between repeated binge-eating episode and the transcriptional regulation of two key genes, adenosine A2A receptor (A2AAR) and dopamine D2 receptor (D2R), in selected brain regions of rats. METHOD: Binge-like eating behavior on HPF was induced through the combination of food restrictions and frustration stress (15 min exposure to HPF without access to it) in female rats, compared to control rats subjected to only restriction or only stress or none of these two conditions. After chronic binge-eating episodes, nucleic acids were extracted from different brain regions, and gene expression levels were assessed through real-time quantitative PCR. The methylation pattern on genes' promoters was investigated using pyrosequencing. RESULTS: The analysis revealed A2AAR upregulation in the amygdala and in the ventral tegmental area (VTA), and D2R downregulation in the nucleus accumbens in binge-eating rats. Concurrently, site-specific DNA methylation alterations at gene promoters were identified in the VTA for A2AAR and in the amygdala and caudate putamen for D2R. DISCUSSION: The alterations on A2AAR and D2R genes regulation highlight the significance of epigenetic mechanisms in the etiology of binge-eating behavior, and underscore the potential for targeted therapeutic interventions, to prevent the development of this maladaptive feeding behavior. These findings provide valuable insights for future research in the field of eating disorders. PUBLIC SIGNIFICANCE: Using an animal model with face, construct, and predictive validity, in which cycles of food restriction and frustration stress evoke binge-eating behavior, we highlight the significance of epigenetic mechanisms on adenosine A2A receptor (A2AAR) and dopamine D2 receptor (D2R) genes regulation. They could represent new potential targets for the pharmacological management of eating disorders characterized by this maladaptive feeding behavior.

4.
Int J Eat Disord ; 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38456603

RESUMO

OBJECTIVE: Test the efficacy of the selective orexin 1 receptor (OX1R) antagonist (SO1RA) nivasorexant in an animal model of binge-eating disorder (BED) and study its dose-response relationship considering free brain concentrations and calculated OX1R occupancy. Compare nivasorexant's profile to that of other, structurally diverse SO1RAs. Gain understanding of potential changes in orexin-A (OXA) neuropeptide and deltaFosB (ΔFosB) protein expression possibly underlying the development of the binge-eating phenotype in the rat model used. METHOD: Binge-like eating of highly palatable food (HPF) in rats was induced through priming by intermittent, repeated periods of dieting and access to HPF, followed by an additional challenge with acute stress. Effects of nivasorexant were compared to the SO1RAs ACT-335827 and IDOR-1104-2408. OXA expression in neurons and neuronal fibers as well as ΔFosB and OXA-ΔFosB co-expression was studied in relevant brain regions using immuno- or immunofluorescent histochemistry. RESULTS: All SO1RAs dose-dependently reduced binge-like eating with effect sizes comparable to the positive control topiramate, at unbound drug concentrations selectively blocking brain OX1Rs. Nivasorexant's efficacy was maintained upon chronic dosing and under conditions involving more frequent stress exposure. Priming for binge-like eating or nivasorexant treatment resulted in only minor changes in OXA or ΔFosB expression in few brain areas. DISCUSSION: Selective OX1R blockade reduced binge-like eating in rats. Neither ΔFosB nor OXA expression proved to be a useful classifier for their binge-eating phenotype. The current results formed the basis for a clinical phase II trial in BED, in which nivasorexant was unfortunately not efficacious compared with placebo. PUBLIC SIGNIFICANCE: Nivasorexant is a new investigational drug for the treatment of binge-eating disorder (BED). It underwent clinical testing in a phase II proof of concept trial in humans but was not efficacious compared with placebo. The current manuscript investigated the drug's efficacy in reducing binge-like eating behavior of a highly palatable sweet and fat diet in a rat model of BED, which initially laid the foundation for the clinical trial.

5.
Med Res Rev ; 43(5): 1607-1667, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37036052

RESUMO

Orexin-A and orexin-B, also named hypocretin-1 and hypocretin-2, are two hypothalamic neuropeptides highly conserved across mammalian species. Their effects are mediated by two distinct G protein-coupled receptors, namely orexin receptor type 1 (OX1-R) and type 2 (OX2-R), which share 64% amino acid identity. Given the wide expression of OX-Rs in different central nervous system and peripheral areas and the several pathophysiological functions in which they are involved, including sleep-wake cycle regulation (mainly mediated by OX2-R), emotion, panic-like behaviors, anxiety/stress, food intake, and energy homeostasis (mainly mediated by OX1-R), both subtypes represent targets of interest for many structure-activity relationship (SAR) campaigns carried out by pharmaceutical companies and academies. However, before 2017 the research was predominantly directed towards dual-orexin ligands, and limited chemotypes were investigated. Analytical characterizations, including resolved structures for both OX1-R and OX2-R in complex with agonists and antagonists, have improved the understanding of the molecular basis of receptor recognition and are assets for medicinal chemists in the design of subtype-selective ligands. This review is focused on the medicinal chemistry aspects of small molecules acting as dual or subtype selective OX1-R/OX2-R agonists and antagonists belonging to different chemotypes and developed in the last years, including radiolabeled OX-R ligands for molecular imaging. Moreover, the pharmacological effects of the most studied ligands in different neuropsychiatric diseases, such as sleep, mood, substance use, and eating disorders, as well as pain, have been discussed. Poly-pharmacology applications and multitarget ligands have also been considered.


Assuntos
Neuropeptídeos , Humanos , Animais , Receptores de Orexina/metabolismo , Ligantes , Orexinas , Neuropeptídeos/metabolismo , Neuropeptídeos/farmacologia , Receptores Acoplados a Proteínas G , Sistema Nervoso Central , Receptores de Neuropeptídeos/metabolismo , Mamíferos/metabolismo
6.
Pharmacol Res ; 195: 106875, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37517560

RESUMO

Neuromedin U (NMU) is a bioactive peptide produced in the gut and in the brain, with a role in multiple physiological processes. NMU acts by binding and activating two G protein coupled receptors (GPCR), the NMU receptor 1 (NMU-R1), which is predominantly expressed in the periphery, and the NMU receptor 2 (NMU-R2), mainly expressed in the central nervous system (CNS). In the brain, NMU and NMU-R2 are consistently present in the hypothalamus, commonly recognized as the main "feeding center". Considering its distribution pattern, NMU revealed to be an important neuropeptide involved in the regulation of food intake, with a powerful anorexigenic ability. This has been observed through direct administration of NMU and by studies using genetically modified animals, which revealed an obesity phenotype when the NMU gene is deleted. Thus, the development of NMU analogs or NMU-R2 agonists might represent a promising pharmacological strategy to treat obese individuals. Furthermore, NMU has been demonstrated to influence the non-homeostatic aspect of food intake, playing a potential role in binge eating behavior. This review aims to discuss and summarize the current literature linking the NMU system with obesity and binge eating behavior, focusing on the influence of NMU on food intake and the neuronal mechanisms underlying its anti-obesity properties. Pharmacological strategies to improve the pharmacokinetic profile of NMU will also be reported.


Assuntos
Bulimia , Neuropeptídeos , Hormônios Peptídicos , Animais , Comportamento Alimentar , Neuropeptídeos/uso terapêutico , Obesidade/tratamento farmacológico , Bulimia/tratamento farmacológico
7.
Int J Eat Disord ; 56(6): 1098-1113, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36840536

RESUMO

OBJECTIVE: Consumption of energy-dense palatable "comfort" food can alleviate stress and negative emotions, while abrupt withdrawal from a palatable diet can worsen these symptoms, causing difficulties with adherence to weight-loss diets. Currently, no pharmacological treatment is effective for obesity-related anxiety, so we investigated the endocannabinoid system (ECS), and specifically the fatty acid amide hydrolase (FAAH), as an interesting emerging target in this context because of its key role in the regulation of both energy homeostasis and emotional behavior. METHODS: Rats were subjected to exposure and subsequent abstinence from a palatable cafeteria diet. During abstinence period, rats were treated with the selective FAAH inhibitor PF-3845 (10 mg/kg; intraperitoneal administration every other day). RESULTS: Abstinent rats displayed an anxiogenic-like behavior and changes in the proteins of ECS signaling machinery in brain areas involved both in anxiety and food intake regulation. In particular, withdrawal caused a reduction of the expression of cannabinoid receptors in the nucleus accumbens and of enzymes diacylglycerol lipase alpha and monoacylglycerol lipase (MAGL) in the amygdala. Pharmacological inhibition of FAAH exerted an anxiolytic-like effect in abstinent animals and increased both MAGL expression in amygdala and CB2 expression in prefrontal cortex. DISCUSSION: Overall, our results suggest that emotional disturbances associated with dieting are coupled with region-specific alterations in the cerebral expression of the ECS and that the enhancement of the endocannabinoid signaling by FAAH inhibition might represent a novel pharmacological strategy for the treatment of anxiety related to abstinence from palatable food. PUBLIC SIGNIFICANCE: The present study focused on evaluating the role of the endocannabinoid system in modulating withdrawal from naturally rewarding activities that have an impact on mood, such as feeding. The variations observed in the emotional behavior of abstinent rats was linked to neuroadaptations of the ECS in specific brain areas.


Assuntos
Amidoidrolases , Endocanabinoides , Ratos , Humanos , Animais , Amidoidrolases/metabolismo , Ansiedade/tratamento farmacológico
8.
Pharmacol Res ; 185: 106521, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36272641

RESUMO

The melanocortinergic neural circuit, known for its influence on energy expenditure and feeding behavior, also plays a role in stress and stress-induced psychiatric disorders, including anxiety and depression. The major contribution is given by the melanocortin-4 receptor (MC4R) subtype, highly expressed in brain regions involved in the control of stress responses. Furthermore, the MC4R appears to profoundly affect the activity of the hypothalamic-pituitary-adrenal (HPA) axis, and it has been also highlighted a functional and anatomical interaction with the corticotropin-releasing factor (CRF), an important mediator of stress and stress-related behaviors. The MC4R agonists seem to exacerbate stress-inducing anxiety- and depressive-like behavior, while MC4R antagonists have been demonstrated to mitigate such disorders, as shown in several preclinical behavioral tests. The evidence collected in the present review suggests that the melanocortin system, through the MC4R, could possibly modulate behavioral responses to stress, suggesting the use of MC4R antagonists as a possible novel treatment for anxiety and depression induced by stress.


Assuntos
Melanocortinas , Sistema Hipófise-Suprarrenal , Humanos , Ansiedade/tratamento farmacológico , Sistema Hipotálamo-Hipofisário , Estresse Fisiológico
9.
J Appl Microbiol ; 133(3): 1956-1968, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35796632

RESUMO

AIMS: Probiotic supplementation approach offers the possibility to shape the gut microbiota (GM), enabling the development of innovative formulations able to improve intestinal well-being and consequently the related body weight modulation and energy metabolism. In the present clinical study, a new potential probiotic supplement based on Lactiplantibacillus plantarum IMC 510 was studied for weight management. METHODS AND RESULTS: Quantitative characterization by qPCR of representative bacterial groups of GM was used to determine the microbiota modulation at different supplementation periods. Furthermore, measurement of the endpoints linked to weight control (body mass index, body weight, waist circumference) was assessed. Specific questionnaires to evaluate the impact on psychological and physiological point of view were performed. Results showed that after 90 days, Lact. plantarum IMC 510 supplementation brought an improvement in endpoints linked to weight control and healthy status, although no significant changes in the microbiota composition were reported for analysed bacterial groups, except for Lactobacillus spp. and Bifidobacterium spp. CONCLUSIONS: We concluded that Lact. plantarum IMC 510 supplementation could be an interesting tool for weight management. More studies are needed to understand the impact on GM, for example, evaluating the production of short-chain fatty acids, since their important role in dietary metabolism. Further research is necessary to better elucidate the relationship between GM and overweight and the mechanism of action by which Lact. plantarum IMC 510 modifies body weight. SIGNIFICANCE AND IMPACT OF THE STUDY: However, these promising outcomes represent a clear advantage of probiotic supplementation and identify a new potential probiotic as a novel and safe therapeutic approach in the obesity prevention and management.


Assuntos
Lactobacillus plantarum , Probióticos , Bactérias , Peso Corporal , Suplementos Nutricionais , Humanos , Lactobacillus plantarum/fisiologia , Obesidade , Sobrepeso , Probióticos/farmacologia
10.
Int J Mol Sci ; 23(23)2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36499556

RESUMO

Recurrent Binge Eating (BE) episodes characterize several eating disorders. Here, we attempted to reassemble a condition closer to BE disorder, and we analyzed whether recurrent episodes might evoke molecular alterations in the hypothalamus of rats. The hypothalamus is a brain region which is sensitive to stress and relevant in motivated behaviors, such as food intake. A well-characterized animal model of BE, in which a history of intermittent food restriction and stress induce binge-like palatable food consumption, was used to analyze the transcriptional regulation of the endocannabinoid system (ECS). We detected, in rats showing the BE behavior, an up-regulated gene expression of cannabinoid type-1 receptor (CB1), sn-1-specific diacylglycerol lipase, as well as fatty acid amide hydrolase (Faah) and monoacylglycerol lipase. A selective reduction in DNA methylation was also observed at the promoter of Faah, which is consistent with the changes in the gene expression. Moreover, BE behavior in rats was associated with an increase in anandamide (AEA) levels. Our findings support the relevant role of the ECS in the regulation of food intake in rats subjected to repeated BE episodes, and, in particular, on AEA signaling, acting via CB1 and FAAH modulation. Notably, the epigenetic regulation of the Faah gene might suggest this enzyme as a possible target for developing new therapeutical approaches.


Assuntos
Transtorno da Compulsão Alimentar , Ratos , Feminino , Animais , Transtorno da Compulsão Alimentar/genética , Epigênese Genética , Endocanabinoides/metabolismo , Amidoidrolases/genética , Amidoidrolases/metabolismo , Monoacilglicerol Lipases/genética , Monoacilglicerol Lipases/metabolismo , Receptores de Canabinoides/metabolismo , Hipotálamo/metabolismo , Receptor CB1 de Canabinoide/genética , Receptor CB1 de Canabinoide/metabolismo , Ingestão de Alimentos
11.
J Neurosci ; 40(28): 5362-5375, 2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32532885

RESUMO

Binge-eating disorder is the most common eating disorder. Various neuropeptides play important roles in the regulation of feeding behavior, including relaxin-3 (RLN3), which stimulates food intake in rats through the activation of the relaxin-family peptide-3 receptor (RXFP3). Here we demonstrate that a likely mechanism underlying the orexigenic action of RLN3 is RXFP3-mediated inhibition of oxytocin- and arginine-vasopressin-synthesizing paraventricular nucleus (PVN) magnocellular neurosecretory cells. Moreover, we reveal that, in male and female rats, this action depends on M-like potassium conductance. Notably, higher intra- and peri-PVN RLN3 fiber densities were observed in females, which may constitute an anatomic substrate for observed sex differences in binge-eating disorder. Finally, in a model of binge-eating in female rats, RXFP3 blockade within the PVN prevented binge-eating behavior. These data demonstrate a direct RLN3/RXFP3 action in the PVN of male and female rats, identify the associated ionic mechanisms, and reveal that hypothalamic RLN3/RXFP3 signaling regulates binge-eating behavior.SIGNIFICANCE STATEMENT Binge-eating disorder is the most common eating disorder worldwide, affecting women twice as frequently as men. Various neuropeptides play important roles in the regulation of feeding behavior, including relaxin-3, which acts via the relaxin-family peptide-3 receptor (RXFP3). Using a model of binge-eating, we demonstrated that relaxin-3/RXFP3 signaling in the hypothalamic paraventricular nucleus (PVN) is necessary for the expression of binge-eating behavior in female rats. Moreover, we elucidated the neuronal mechanism of RLN3/RXFP3 signaling in PVN in male and female rats and characterized sex differences in the RLN3 innervation of the PVN. These findings increase our understanding of the brain circuits and neurotransmitters involved in binge-eating disorder pathology and identify RXFP3 as a therapeutic target for binge-like eating disorders.


Assuntos
Bulimia/metabolismo , Comportamento Alimentar/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Neurônios/fisiologia , Núcleo Hipotalâmico Paraventricular/metabolismo , Canais de Potássio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Peptídeos/metabolismo , Relaxina/metabolismo , Transdução de Sinais/fisiologia , Animais , Comportamento Animal/fisiologia , Feminino , Masculino , Ratos , Caracteres Sexuais
12.
NMR Biomed ; 34(4): e4469, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33458898

RESUMO

Maladaptive eating behavior is a growing public health problem and compulsively eating excessive food in a short time, or binge eating, is a key symptom of many eating disorders. In order to investigate the binge-like eating behavior in female rats, induced by intermittent food restrictions/refeeding and frustration stress, we analyzed for the first time the metabolic profile obtained from serum of rats, through nuclear magnetic resonance (NMR) spectroscopy. In this experimental protocol, rats were exposed to chow food restricting/refeeding and frustration stress manipulation. This stress procedure consists of 15 min exposure to the odor and sight of a familiar chocolate paste, without access to it, just before offering the palatable food. In this model, a "binge-eating episode" was considered the significantly higher palatable food consumption within 2 h in restricted and stressed rats (R + S) than in the other three experimental groups: rats with no food restriction and no stress (NR + NS), only stressed rats (NR + S) or only restricted rats (R + NS). Serum samples from these four different rat groups were collected. The statistical analysis of the 1 H NMR spectral profiles of the four sets of samples pointed to O- and N-acetyl glycoproteins as the main biomarkers for the discrimination of restriction effects. Other metabolites, such as threonine, glycine, glutamine, acetate, pyruvate and lactate, showed trends that may be useful to understand metabolic pathways involved in eating disorders. This study suggested that NMR-based metabolomics is a suitable approach to detect biomarkers related to binge-eating behavior.


Assuntos
Transtorno da Compulsão Alimentar/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Metabolômica , Animais , Biomarcadores/sangue , Feminino , Lipídeos/sangue , Substâncias Macromoleculares/sangue , Ratos , Ratos Sprague-Dawley
13.
FASEB J ; 34(7): 9358-9371, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32463138

RESUMO

Numerous nutritional approaches aimed at reducing body weight have been developed as a strategy to reduce obesity. Most of these interventions rely on reducing caloric intake or limiting calories access to a few hours per day. In this work, we analyzed the effects of the extended (24 hours/day) or restricted (1 hour/day) access to a cafeteria-style (CAF) diet, on rat body weight and hepatic lipid metabolism, with respect to control rats (CTR) fed with a standard chow diet. The body weight gain of restricted-fed rats was not different from CTR, despite the slightly higher total caloric intake, but resulted significantly lower than extended-fed rats, which showed a CAF diet-induced obesity and a dramatically higher total caloric intake. However, both CAF-fed groups of rats showed, compared to CTR, unhealthy serum and hepatic parameters such as higher serum glucose level, lower HDL values, and increased hepatic triacylglycerol and cholesterol amount. The hepatic expression and activity of key enzymes of fatty acid synthesis, acetyl-CoA carboxylase (ACC), and fatty acid synthase (FAS), was similarly reduced in both CAF-fed groups of rats with respect to CTR. Anyway, while in extended-fed rats this reduction was associated to a long-term mechanism involving sterol regulatory element-binding protein-1 (SREBP-1), in restricted-fed animals a short-term mechanism based on PKA and AMPK activation occurred in the liver. Furthermore, hepatic fatty acid oxidation (FAO) and oxidative stress resulted significantly increased in extended, but not in restricted-fed rats, as compared to CTR. Overall, these results demonstrate that although limiting the total caloric intake might successfully fight obesity development, the nutritional content of the diet is the major determinant for the health status.


Assuntos
Peso Corporal , Dieta Hiperlipídica/efeitos adversos , Lipogênese , Fígado/metabolismo , Fígado/patologia , Aumento de Peso , Animais , Ingestão de Energia , Lipídeos/sangue , Masculino , Ratos , Ratos Wistar
14.
Pharmacol Res ; 172: 105847, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34438062

RESUMO

The peripheral peptide hormone ghrelin is a powerful stimulator of food intake, which leads to body weight gain and adiposity in both rodents and humans. The hormone, thus, increases the vulnerability to obesity and binge eating behavior. Several studies have revealed that ghrelin's functions are due to its interaction with the growth hormone secretagogue receptor type 1a (GHSR1a) in the hypothalamic area; besides, ghrelin also promotes the reinforcing properties of hedonic food, acting at extra-hypothalamic sites and interacting with dopaminergic, cannabinoid, opioid, and orexin signaling. The hormone is primarily present in two forms in the plasma and the enzyme ghrelin O-acyltransferase (GOAT) allows the acylation reaction which causes the transformation of des-acyl-ghrelin (DAG) to the active form acyl-ghrelin (AG). DAG has been demonstrated to show antagonist properties; it is metabolically active, and counteracts the effects of AG on glucose metabolism and lipolysis, and reduces food consumption, body weight, and hedonic feeding response. Both peptides seem to influence the hypothalamic-pituitary-adrenal (HPA) axis and the corticosterone/cortisol level that drive the urge to eat under stressful conditions. These findings suggest that DAG and inhibition of GOAT may be targets for obesity and bingeing-related eating disorders and that AG/DAG ratio may be an important potential biomarker to assess the risk of developing maladaptive eating behaviors.


Assuntos
Aciltransferases/fisiologia , Comportamento Alimentar , Grelina/fisiologia , Animais , Bulimia , Ingestão de Alimentos , Humanos , Motivação , Recompensa
15.
Eur J Nutr ; 60(5): 2695-2707, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33386893

RESUMO

PURPOSE: There is increasing evidence for the involvement of dietary bioactive compounds in the cross-talk modulation of endocannabinoid system and some of the key regulators of transcriptional control for adipogenesis. METHODS: We aimed to characterize the expression of cannabinoid CB1/CB2 receptors and fatty acid amide hydrolase (FAAH) along with selected adipogenesis-related genes (PPARγ, SREBP-1c and PREF-1), adipocyte-secreted factors (leptin and adiponectin), mitochondrial bioenergetic modulators (PGC-1A and UCP-2), and transient receptor potential vanilloid subtype 1 (TRPV1) and 2 (TRPV2) channels in visceral adipose tissue of rats fed with a high-fat diet (HFD) containing either tart cherry seeds alone or tart cherry seeds and juice for 17 weeks. The visceral adipose tissue was weighed and checked the expression of different markers by qRT-PCR, Western blot and immunohistochemistry. RESULTS: Tart cherry supplements were able to downregulate the HFD-induced mRNA expression of CB1 receptor, SREBP-1c, PPARγ, leptin, TRPV1 and TRPV2 resulting in potential anti-adipogenic effects. CONCLUSION: The present study points out that the intake of bioactive constituents of tart cherry may attenuate the effect of adipogenesis by acting directly on the adipose tissue and modulating the interplay between CB1, PPARγ and TRPV channel gene transcription.


Assuntos
Prunus avium , Adipogenia , Tecido Adiposo , Animais , Dieta Hiperlipídica/efeitos adversos , Suplementos Nutricionais , Gordura Intra-Abdominal , Obesidade/genética , RNA Mensageiro/genética , Ratos
16.
Int J Mol Sci ; 22(1)2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33401515

RESUMO

Different neuromodulatory systems are involved in long-term energy balance and body weight and, among these, evidence shows that the endocannabinoid system, in particular the activation of type-1 cannabinoid receptor, plays a key role. We here review current literature focusing on the role of the gene encoding type-1 cannabinoid receptors in the CNS and on the modulation of its expression by food intake and specific eating behaviors. We point out the importance to further investigate how environmental cues might have a role in the development of obesity as well as eating disorders through the transcriptional regulation of this gene in order to prevent or to treat these pathologies.


Assuntos
Comportamento Alimentar , Regulação da Expressão Gênica , Receptor CB1 de Canabinoide/genética , Animais , Humanos , Camundongos , Regiões Promotoras Genéticas , Ratos , Transcrição Gênica
17.
Int J Mol Sci ; 22(23)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34884757

RESUMO

Nociceptin/orphanin FQ (N/OFQ) is a 17-residue neuropeptide that binds the nociceptin opioid-like receptor (NOP). N/OFQ exhibits nucleotidic and aminoacidics sequence homology with the precursors of other opioid neuropeptides but it does not activate either MOP, KOP or DOP receptors. Furthermore, opioid neuropeptides do not activate the NOP receptor. Generally, activation of N/OFQ system exerts anti-opioids effects, for instance toward opioid-induced reward and analgesia. The NOP receptor is widely expressed throughout the brain, whereas N/OFQ localization is confined to brain nuclei that are involved in stress response such as amygdala, BNST and hypothalamus. Decades of studies have delineated the biological role of this system demonstrating its involvement in significant physiological processes such as pain, learning and memory, anxiety, depression, feeding, drug and alcohol dependence. This review discusses the role of this peptidergic system in the modulation of stress and stress-associated psychiatric disorders in particular drug addiction, mood, anxiety and food-related associated-disorders. Emerging preclinical evidence suggests that both NOP agonists and antagonists may represent a effective therapeutic approaches for substances use disorder. Moreover, the current literature suggests that NOP antagonists can be useful to treat depression and feeding-related diseases, such as obesity and binge eating behavior, whereas the activation of NOP receptor by agonists could be a promising tool for anxiety.


Assuntos
Peptídeos Opioides/fisiologia , Receptores Opioides/fisiologia , Estresse Fisiológico/fisiologia , Animais , Transtornos de Ansiedade/tratamento farmacológico , Transtornos de Ansiedade/fisiopatologia , Encéfalo/efeitos dos fármacos , Encéfalo/fisiopatologia , Transtornos da Alimentação e da Ingestão de Alimentos/tratamento farmacológico , Transtornos da Alimentação e da Ingestão de Alimentos/fisiopatologia , Humanos , Modelos Neurológicos , Transtornos do Humor/tratamento farmacológico , Transtornos do Humor/fisiopatologia , Peptídeos Opioides/agonistas , Peptídeos Opioides/antagonistas & inibidores , Recompensa , Estresse Fisiológico/efeitos dos fármacos , Transtornos Relacionados ao Uso de Substâncias/tratamento farmacológico , Transtornos Relacionados ao Uso de Substâncias/fisiopatologia , Receptor de Nociceptina , Nociceptina
18.
Int J Mol Sci ; 22(20)2021 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-34681831

RESUMO

Changes in functionality and composition of gut microbiota (GM) have been associated and may contribute to the development and maintenance of obesity and related diseases. The aim of our study was to investigate for the first time the impact of Lactiplantibacillus (L.) plantarum IMC 510 in a rat model of diet-induced obesity, specifically in the cafeteria (CAF) diet. This diet provides a strong motivation to voluntary overeat, due to the palatability and variety of selected energy-dense foods. The oral administration for 84 days of this probiotic strain, added to the CAF diet, decreased food intake and body weight gain. Accordingly, it ameliorated body mass index, liver and white adipose tissue weight, hepatic lipid accumulation, adipocyte size, serum parameters, including glycemia and low-density lipoprotein levels, in CAF fed rats, potentially through leptin control. In this scenario, L. plantarum IMC 510 showed also beneficial effects on GM, limiting the microbial imbalance established by long exposure to CAF diet and preserving the proportion of different bacterial taxa. Further research is necessary to better elucidate the relationship between GM and overweight and then the mechanism of action by which L. plantarum IMC 510 modifies weight. However, these promising results prompt a clear advantage of probiotic supplementation and identify a new potential probiotic as a novel and safe therapeutic approach in obesity prevention and management.


Assuntos
Biodiversidade , Suplementos Nutricionais/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Obesidade/microbiologia , Probióticos/administração & dosagem , Aumento de Peso/efeitos dos fármacos , Adipócitos/citologia , Tecido Adiposo Branco/efeitos dos fármacos , Ração Animal/microbiologia , Animais , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , DNA Bacteriano , Dieta Hiperlipídica , Modelos Animais de Doenças , Fezes/microbiologia , Microbioma Gastrointestinal/genética , Leptina/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipoproteínas LDL/efeitos dos fármacos , Lipoproteínas LDL/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Obesidade/induzido quimicamente , RNA Ribossômico 16S , Ratos , Ratos Sprague-Dawley
19.
Molecules ; 26(5)2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33807712

RESUMO

BACKGROUND: Tart cherries (Prunus cerasus L.) are a rich source of anthocyanins. They are phytochemical flavonoids found in red and blue fruits, and vegetables that can reduce hyperlipidemia. Visceral Adipose Tissue (VAT) has emerged as a major player in driving obesity-related inflammatory response. METHODS: This study has investigated the potential positive effects of tart cherries on rats with Diet-Induced Obesity (DIO). In particular, the inflammatory status in retroperitoneal (RPW) and perigonadal (PGW) adipose tissue were studied. Rats were fed ad libitum for 17 weeks with a hypercaloric diet with the supplementation of tart cherries seeds powder (DS) and seeds powder plus tart cherries juice containing 1mg of anthocyanins (DJS). In RPW and PGW, expression of CRP, IL-1 ß, TNF-α, CCL2 and CD36, were measured by qRT-PCR, Western blot and immunohistochemistry techniques. RESULTS: No differences in the weight of RPW and PGW animals were found between DS and DJS groups compared to DIO rats. However, an increase of inflammatory markers was observed in DIO group in comparison with control lean rats. A modulation of these markers was evident upon tart cherry supplementation. CONCLUSION: Study results suggest that tart cherry enriched-diet did not modify the accumulation of visceral fat, but it decreased inflammatory markers in both tissues. Therefore, this supplementation could be useful, in combination with healthy lifestyles, to modify adipose tissue cell metabolism limiting-obesity related organ damage.


Assuntos
Biomarcadores/metabolismo , Sucos de Frutas e Vegetais , Gordura Intra-Abdominal/metabolismo , Obesidade/dietoterapia , Prunus avium/química , Animais , Antígenos CD36/genética , Antígenos CD36/metabolismo , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Dieta Hiperlipídica/efeitos adversos , Suplementos Nutricionais , Regulação da Expressão Gênica , Gordura Intra-Abdominal/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Masculino , Obesidade/etiologia , Paniculite/dietoterapia , Paniculite/genética , Paniculite/metabolismo , Ratos Wistar , Sementes
20.
Int J Eat Disord ; 53(5): 432-446, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32275093

RESUMO

OBJECTIVE: Both environmental and genetic factors are known to contribute to the development of anorexia nervosa (AN), but the exact etiology remains poorly understood. Herein, we studied the transcriptional regulation of the endocannabinoid system, an interesting target for body weight maintenance and the control of food intake and energy balance. METHOD: We used two well-characterized animal models of AN: (a) the activity-based anorexia (ABA) model in which rats, housed with running wheels and subjected to daily food restriction, show reductions in body weight and increase in physical activity; (b) the genetic anx/anx mouse displaying the core features of AN: low food intake and emaciation. RESULTS: Among the evaluated endocannabinoid system components, we observed a selective and significant down-regulation of the gene encoding for the type 1 cannabinoid receptor (Cnr1) in ABA rats' hypothalamus and nucleus accumbens and, in the latter area, a consistent, significant and correlated increase in DNA methylation at the gene promoter. No changes were evident in the anx/anx mice except for a down-regulation of Cnr1, in the prefrontal cortex. DISCUSSION: Our findings support a possible role for Cnr1 in the ABA animal model of AN. In particular, its regulation in the nucleus accumbens appears to be triggered by environmental cues due to the consistent epigenetic modulation of the promoter. These data warrant further studies on Cnr1 regulation as a possible target for treatment of AN.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA