Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Environ Sci Technol ; 57(48): 19395-19406, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38050814

RESUMO

Excessive nitrate in surface waters deteriorates the water quality and threatens human health. Human activities have caused increased nitrate concentrations in global surface waters over the past 50 years. An assessment of the long-term trajectory of surface-water nitrate exposure to world populations and the associated potential health risks is imperative but lacking. Here, we used global spatially explicit data on surface-water nitrate concentrations and population density, in combination with thresholds for health risks from epidemiological studies, to quantify the long-term changes in surface-water nitrate exposure to world populations at multiple spatial scales. During 1970-2010, global populations potentially affected by acute health risks associated with surface-water nitrate exposure increased from 6 to 60 million persons per year, while populations at potential chronic health risks increased from 169 to 1361 million persons per year. Potential acute risks have increasingly affected Asian countries. Populations potentially affected by chronic risks shifted from dominance by high-income countries (in Europe and North America) to middle-income countries (in Asia and Africa). To mitigate adverse health effects associated with surface-water nitrate exposure, anthropogenic nitrogen inputs to natural environments should be drastically reduced. International and national standards of maximum nitrate contamination may need to be lowered.


Assuntos
Nitratos , Poluentes Químicos da Água , Humanos , Compostos Orgânicos , Qualidade da Água , Ásia , Meio Ambiente , Poluentes Químicos da Água/análise
2.
Environ Sci Technol ; 57(36): 13506-13519, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37647507

RESUMO

Nitrous oxide (N2O) is a long-lived greenhouse gas and currently contributes ∼10% to global greenhouse warming. Studies have suggested that inland waters are a large and growing global N2O source, but whether, how, where, when, and why inland-water N2O emissions changed in the Anthropocene remains unclear. Here, we quantify global N2O formation, transport, and emission along the aquatic continuum and their changes using a spatially explicit, mechanistic, coupled biogeochemistry-hydrology model. The global inland-water N2O emission increased from 0.4 to 1.3 Tg N yr-1 during 1900-2010 due to (1) growing N2O inputs mainly from groundwater and (2) increased inland-water N2O production, largely in reservoirs. Inland waters currently contribute 7 (5-10)% to global total N2O emissions. The highest inland-water N2O emissions are typically in and downstream of reservoirs and areas with high population density and intensive agricultural activities in eastern and southern Asia, southeastern North America, and Europe. The expected continuing excessive use of nutrients, dam construction, and development of suboxic conditions in aging reservoirs imply persisting high inland-water N2O emissions.


Assuntos
Agricultura , Óxido Nitroso , Ásia Meridional , Água
3.
Proc Natl Acad Sci U S A ; 117(10): 5478-5485, 2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32094191

RESUMO

Multicellularity is a key evolutionary innovation, leading to coordinated activity and resource sharing among cells, which generally occurs via the physical exchange of chemical compounds. However, filamentous cable bacteria display a unique metabolism in which redox transformations in distant cells are coupled via long-distance electron transport rather than an exchange of chemicals. This challenges our understanding of organismal functioning, as the link among electron transfer, metabolism, energy conservation, and filament growth in cable bacteria remains enigmatic. Here, we show that cells within individual filaments of cable bacteria display a remarkable dichotomy in biosynthesis that coincides with redox zonation. Nanoscale secondary ion mass spectrometry combined with 13C (bicarbonate and propionate) and 15N-ammonia isotope labeling reveals that cells performing sulfide oxidation in deeper anoxic horizons have a high assimilation rate, whereas cells performing oxygen reduction in the oxic zone show very little or no label uptake. Accordingly, oxygen reduction appears to merely function as a mechanism to quickly dispense of electrons with little to no energy conservation, while biosynthesis and growth are restricted to sulfide-respiring cells. Still, cells can immediately switch roles when redox conditions change, and show no differentiation, which suggests that the "community service" performed by the cells in the oxic zone is only temporary. Overall, our data reveal a division of labor and electrical cooperation among cells that has not been seen previously in multicellular organisms.


Assuntos
Deltaproteobacteria/crescimento & desenvolvimento , Deltaproteobacteria/metabolismo , Eletricidade , Transporte de Elétrons , Amônia/metabolismo , Isótopos de Carbono , Espectrometria de Massa de Íon Secundário , Sulfetos/metabolismo
4.
Glob Chang Biol ; 28(9): 2875-2894, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35174577

RESUMO

Subtidal marine sediments are one of the planet's primary carbon stores and strongly influence the oceanic sink for atmospheric CO2 . By far the most widespread human activity occurring on the seabed is bottom trawling/dredging for fish and shellfish. A global first-order estimate suggested mobile demersal fishing activities may cause 0.16-0.4 Gt of organic carbon (OC) to be remineralized annually from seabed sediment carbon stores (Sala et al., 2021). There are, however, many uncertainties in this calculation. Here, we discuss the potential drivers of change in seabed sediment OC stores due to mobile demersal fishing activities and conduct a literature review, synthesizing studies where this interaction has been directly investigated. Under certain environmental settings, we hypothesize that mobile demersal fishing would reduce OC in seabed stores due to lower production of flora and fauna, the loss of fine flocculent material, increased sediment resuspension, mixing and transport and increased oxygen exposure. Reductions would be offset to varying extents by reduced faunal bioturbation and community respiration, increased off-shelf transport and increases in primary production from the resuspension of nutrients. Studies which directly investigated the impact of demersal fishing on OC stocks had mixed results. A finding of no significant effect was reported in 61% of 49 investigations; 29% reported lower OC due to fishing activities, with 10% reporting higher OC. In relation to remineralization rates within the seabed, four investigations reported that demersal fishing activities decreased remineralization, with three reporting higher remineralization rates. Patterns in the environmental and experimental characteristics between different outcomes were largely indistinct. More evidence is urgently needed to accurately quantify the impact of anthropogenic physical disturbance on seabed carbon in different environmental settings and to incorporate full evidence-based carbon considerations into global seabed management.


Assuntos
Carbono , Pesqueiros , Animais , Ecossistema , Sedimentos Geológicos , Caça , Oceanos e Mares
5.
Global Biogeochem Cycles ; 36(5): e2021GB007231, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35859702

RESUMO

We investigate if the commonly neglected riverine detrital carbonate fluxes might reconciliate several chemical mass balances of the global ocean. Particulate inorganic carbon (PIC) concentrations in riverine suspended sediments, that is, carbon contained by these detrital carbonate minerals, were quantified at the basin and global scale. Our approach is based on globally representative data sets of riverine suspended sediment composition, catchment properties, and a two-step regression procedure. The present-day global riverine PIC flux is estimated at 3.1 ± 0.3 Tmol C/y (13% of total inorganic carbon export and 4% of total carbon export) with a flux-weighted mean concentration of 0.26 ± 0.03 wt%. The flux prior to damming was 4.1 ± 0.5 Tmol C/y. PIC fluxes are concentrated in limestone-rich, rather dry and mountainous catchments of large rivers near Arabia, South East Asia, and Europe with 2.2 Tmol C/y (67.6%) discharged between 15°N and 45°N. Greenlandic and Antarctic meltwater discharge and ice-rafting additionally contribute 0.8 ± 0.3 Tmol C/y. This amount of detrital carbonate minerals annually discharged into the ocean implies a significant contribution of calcium (∼4.75 Tmol Ca/y) and alkalinity fluxes (∼10 Tmol (eq)/y) to marine mass balances and moderate inputs of strontium (∼5 Gmol Sr/y) based on undisturbed riverine and cryospheric inputs and a dolomite/calcite ratio of 0.1. Magnesium fluxes (∼0.25 Tmol Mg/y), mostly hosted by less-soluble dolomite, are rather negligible. These unaccounted fluxes help in elucidating respective marine mass balances and potentially alter conclusions based on these budgets.

6.
Environ Sci Technol ; 55(24): 16757-16769, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34855371

RESUMO

Rivers play an important role in the global carbon (C) cycle. However, it remains unknown how long-term river C fluxes change because of climate, land-use, and other environmental changes. Here, we investigated the spatiotemporal variations in global freshwater C cycling in the 20th century using the mechanistic IMAGE-Dynamic Global Nutrient Model extended with the Dynamic In-Stream Chemistry Carbon module (DISC-CARBON) that couples river basin hydrology, environmental conditions, and C delivery with C flows from headwaters to mouths. The results show heterogeneous spatial distribution of dissolved inorganic carbon (DIC) concentrations in global inland waters with the lowest concentrations in the tropics and highest concentrations in the Arctic and semiarid and arid regions. Dissolved organic carbon (DOC) concentrations are less than 10 mg C/L in most global inland waters and are generally high in high-latitude basins. Increasing global C inputs, burial, and CO2 emissions reported in the literature are confirmed by DISC-CARBON. Global river C export to oceans has been stable around 0.9 Pg yr-1. The long-term changes and spatial patterns of concentrations and fluxes of different C forms in the global river network unfold the combined influence of the lithology, climate, and hydrology of river basins, terrestrial and biological C sources, in-stream C transformations, and human interferences such as damming.


Assuntos
Matéria Orgânica Dissolvida , Rios , Regiões Árticas , Água Doce , Humanos , Hidrologia
7.
Rev Geophys ; 58(3): e2019RG000681, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32879922

RESUMO

Alkalinity, the excess of proton acceptors over donors, plays a major role in ocean chemistry, in buffering and in calcium carbonate precipitation and dissolution. Understanding alkalinity dynamics is pivotal to quantify ocean carbon dioxide uptake during times of global change. Here we review ocean alkalinity and its role in ocean buffering as well as the biogeochemical processes governing alkalinity and pH in the ocean. We show that it is important to distinguish between measurable titration alkalinity and charge balance alkalinity that is used to quantify calcification and carbonate dissolution and needed to understand the impact of biogeochemical processes on components of the carbon dioxide system. A general treatment of ocean buffering and quantification via sensitivity factors is presented and used to link existing buffer and sensitivity factors. The impact of individual biogeochemical processes on ocean alkalinity and pH is discussed and quantified using these sensitivity factors. Processes governing ocean alkalinity on longer time scales such as carbonate compensation, (reversed) silicate weathering, and anaerobic mineralization are discussed and used to derive a close-to-balance ocean alkalinity budget for the modern ocean.

8.
Environ Sci Technol ; 54(19): 11940-11950, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32845131

RESUMO

This paper presents the spatially explicit (0.5° spatial resolution) Dynamic InStream Chemistry (DISC)-SILICON module, which is part of the Integrated Model to Assess the Global Environment-Dynamic Global Nutrient Model global nutrient cycling framework. This new model, for the first time, enables to integrate the combined impact of long-term changes in land use, climate, and hydrology on Si sources (weathering, sewage, and soil loss) and sinks (uptake by diatoms, sedimentation, and burial) along the river continuum. Comparison of discharge and dissolved silica results with observations shows good agreement both in the Rhine and Yangtze. The simulated total Si export for the Rhine is stable during the period 1900-2000. The total Si export for the Yangtze decreased (155-51 Gmol yr-1) because of damming and transformation of 40% of the natural vegetation to cropland. As a result of dam construction in the Yangtze, diatom primary production (from 24 to 48 Gmol yr-1) and burial (15 to 32 Gmol yr-1) increased and the DSi export decreased (139-46 Gmol yr-1) from the 1950s to 1990s. The Three Gorges Reservoir has a large contribution to diatom primary production (11%) and burial (12%) in the Yangtze basin. DISC-SILICON reproduces a flooding-induced increase in Si inputs and burial and the legacy of this temporary storage in subsequent dry years.


Assuntos
Diatomáceas , Rios , China , Monitoramento Ambiental , Hidrologia , Silício
9.
Rapid Commun Mass Spectrom ; 29(23): 2263-71, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26522319

RESUMO

RATIONALE: Compound-specific isotope analysis (CSIA) of nitrogen in amino acids has proven a valuable tool in many fields (e.g. ecology). Several intact polar lipids (IPLs) also contain nitrogen, and their nitrogen isotope ratios have the potential to elucidate food-web interactions or metabolic pathways. Here we have developed novel methodology for the determination of δ(15)N values of nitrogen-containing headgroups of IPLs using gas chromatography coupled with isotope-ratio mass spectrometry. METHODS: Intact polar lipids with nitrogen-containing headgroups were hydrolyzed and the resulting compounds were derivatized by (1) acetylation with pivaloyl chloride for compounds with amine and hydroxyl groups or (2) esterification using acidified 2-propanol followed by acetylation with pivaloyl chloride for compounds with both carboxyl and amine groups. The δ(15)N values of the derivatives were subsequently determined using gas chromatography/combustion/isotope-ratio mass spectrometry. RESULTS: Intact polar lipids with ethanolamine and amino acid headgroups, such as phosphatidylethanolamine and phosphatidylserine, were successfully released from the IPLs and derivatized. Using commercially available pure compounds it was established that δ(15)N values of ethanolamine and glycine were not statistically different from the offline-determined values. Application of the technique to microbial cultures and a microbial mat showed that the method works well for the release and derivatization of the headgroup of phosphatidylethanolamine, a common IPL in bacteria. CONCLUSIONS: A method to enable CSIA of nitrogen of selected IPLs has been developed. The method is suitable for measuring natural stable nitrogen isotope ratios in microbial lipids, in particular phosphatidylethanolamine, and will be especially useful for tracing the fate of nitrogen in deliberate tracer experiments.


Assuntos
Aminoácidos/análise , Etanolamina/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Lipídeos/química , Nitrogênio/análise , Bactérias/química , Hidrólise , Isótopos de Nitrogênio/análise , Fosfatidiletanolaminas/química , Fosfatidilserinas/química
10.
Sci Adv ; 10(20): eadm8096, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38758798

RESUMO

Organic matter (OM) transformations in marine sediments play a crucial role in the global carbon cycle. However, secondary production and priming have been ignored in marine biogeochemistry. By incubating shelf sediments with various 13C-labeled algal substrates for 400 days, we show that ~65% of the lipids and ~20% of the proteins were mineralized by numerically minor heterotrophic bacteria as revealed by RNA stable isotope probing. Up to 11% of carbon from the algal lipids was transformed into the biomass of secondary producers as indicated by 13C incorporation in amino acids. This biomass turned over throughout the experiment, corresponding to dynamic microbial shifts. Algal lipid addition accelerated indigenous OM degradation by 2.5 to 6 times. This priming was driven by diverse heterotrophic bacteria and sulfur- and iron-cycling bacteria and, in turn, resulted in extra secondary production, which exceeded that stimulated by added substrates. These interactions between degradation, secondary production, and priming govern the eventual fate of OM in marine sediments.


Assuntos
Sedimentos Geológicos , Sedimentos Geológicos/química , Biomassa , Bactérias/metabolismo , Ciclo do Carbono , Carbono/metabolismo , Carbono/química , Isótopos de Carbono , Lipídeos/química , Compostos Orgânicos/química
11.
Sci Adv ; 9(4): eabq0110, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36696500

RESUMO

Quantitative reconstructions of hydrological change during ancient greenhouse warming events provide valuable insight into warmer-than-modern hydrological cycles but are limited by paleoclimate proxy uncertainties. We present sea surface temperature (SST) records and seawater oxygen isotope (δ18Osw) estimates for the Middle Eocene Climatic Optimum (MECO), using coupled carbonate clumped isotope (Δ47) and oxygen isotope (δ18Oc) data of well-preserved planktonic foraminifera from the North Atlantic Newfoundland Drifts. These indicate a transient ~3°C warming across the MECO, with absolute temperatures generally in accordance with trace element (Mg/Ca)-based SSTs but lower than biomarker-based SSTs for the same interval. We find a transient ~0.5‰ shift toward higher δ18Osw, which implies increased salinity in the North Atlantic subtropical gyre and potentially a poleward expansion of its northern boundary in response to greenhouse warming. These observations provide constraints on dynamic ocean response to warming events, which are consistent with theory and model simulations predicting an enhanced hydrological cycle under global warming.

12.
Nat Commun ; 13(1): 1104, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35232971

RESUMO

In the open ocean, calcium carbonates are mainly found in two mineral forms. Calcite, the least soluble, is widespread at the seafloor, while aragonite, the more soluble, is rarely preserved in marine sediments. Despite its greater solubility, research has shown that aragonite, whose contribution to global pelagic calcification could be at par with that of calcite, is able to reach the deep-ocean. If large quantities of aragonite settle and dissolve at the seafloor, this represents a large source of alkalinity that buffers the deep ocean and favours the preservation of less soluble calcite, acting as a deep-sea, carbonate version of galvanization. Here, we investigate the role of aragonite dissolution on the early diagenesis of calcite-rich sediments using a novel 3D, micrometric-scale reactive-transport model combined with 3D, X-ray tomography structures of natural aragonite and calcite shells. Results highlight the important role of diffusive transport in benthic calcium carbonate dissolution, in agreement with recent work. We show that, locally, aragonite fluxes to the seafloor could be sufficient to suppress calcite dissolution in the top layer of the seabed, possibly causing calcite recrystallization. As aragonite producers are particularly vulnerable to ocean acidification, the proposed galvanizing effect of aragonite could be weakened in the future, and calcite dissolution at the sediment-water interface will have to cover a greater share of CO2 neutralization.


Assuntos
Carbonato de Cálcio , Água do Mar , Carbonato de Cálcio/química , Carbonatos , Concentração de Íons de Hidrogênio , Água do Mar/química , Solubilidade
13.
Front Microbiol ; 13: 883807, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35663875

RESUMO

Cable bacteria are multicellular sulfide oxidizing bacteria that display a unique metabolism based on long-distance electron transport. Cells in deeper sediment layers perform the sulfide oxidizing half-reaction whereas cells in the surface layers of the sediment perform the oxygen-reducing half-reaction. These half-reactions are coupled via electron transport through a conductive fiber network that runs along the shared cell envelope. Remarkably, only the sulfide oxidizing half-reaction is coupled to biosynthesis and growth whereas the oxygen reducing half-reaction serves to rapidly remove electrons from the conductive fiber network and is not coupled to energy generation and growth. Cells residing in the oxic zone are believed to (temporarily) rely on storage compounds of which polyphosphate (poly-P) is prominently present in cable bacteria. Here we investigate the role of poly-P in the metabolism of cable bacteria within the different redox environments. To this end, we combined nanoscale secondary ion mass spectrometry with dual-stable isotope probing (13C-DIC and 18O-H2O) to visualize the relationship between growth in the cytoplasm (13C-enrichment) and poly-P activity (18O-enrichment). We found that poly-P was synthesized in almost all cells, as indicated by 18O enrichment of poly-P granules. Hence, poly-P must have an important function in the metabolism of cable bacteria. Within the oxic zone of the sediment, where little growth is observed, 18O enrichment in poly-P granules was significantly lower than in the suboxic zone. Thus, both growth and poly-P metabolism appear to be correlated to the redox environment. However, the poly-P metabolism is not coupled to growth in cable bacteria, as many filaments from the suboxic zone showed poly-P activity but did not grow. We hypothesize that within the oxic zone, poly-P is used to protect the cells against oxidative stress and/or as a resource to support motility, while within the suboxic zone, poly-P is involved in the metabolic regulation before cells enter a non-growing stage.

14.
PLoS One ; 16(1): e0241095, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33503057

RESUMO

Sponges produce distinct fatty acids (FAs) that (potentially) can be used as chemotaxonomic and ecological biomarkers to study endosymbiont-host interactions and the functional ecology of sponges. Here, we present FA profiles of five common habitat-building deep-sea sponges (class Demospongiae, order Tetractinellida), which are classified as high microbial abundance (HMA) species. Geodia hentscheli, G. parva, G. atlantica, G. barretti, and Stelletta rhaphidiophora were collected from boreal and Arctic sponge grounds in the North-Atlantic Ocean. Bacterial FAs dominated in all five species and particularly isomeric mixtures of mid-chain branched FAs (MBFAs, 8- and 9-Me-C16:0 and 10- and 11-Me-C18:0) were found in high abundance (together ≥ 20% of total FAs) aside more common bacterial markers. In addition, the sponges produced long-chain linear, mid- and a(i)-branched unsaturated FAs (LCFAs) with a chain length of 24‒28 C atoms and had predominantly the typical Δ5,9 unsaturation, although the Δ9,19 and (yet undescribed) Δ11,21 unsaturations were also identified. G. parva and S. rhaphidiophora each produced distinct LCFAs, while G. atlantica, G. barretti, and G. hentscheli produced similar LCFAs, but in different ratios. The different bacterial precursors varied in carbon isotopic composition (δ13C), with MBFAs being more enriched compared to other bacterial (linear and a(i)-branched) FAs. We propose biosynthetic pathways for different LCFAs from their bacterial precursors, that are consistent with small isotopic differences found in LCFAs. Indeed, FA profiles of deep-sea sponges can serve as chemotaxonomic markers and support the concept that sponges acquire building blocks from their endosymbiotic bacteria.


Assuntos
Organismos Aquáticos , Ácidos Graxos Insaturados/metabolismo , Geodia/metabolismo , Poríferos/microbiologia , Animais , Organismos Aquáticos/classificação , Organismos Aquáticos/metabolismo , Organismos Aquáticos/microbiologia
15.
Front Microbiol ; 12: 620807, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33584623

RESUMO

Cable bacteria are multicellular, Gram-negative filamentous bacteria that display a unique division of metabolic labor between cells. Cells in deeper sediment layers are oxidizing sulfide, while cells in the surface layers of the sediment are reducing oxygen. The electrical coupling of these two redox half reactions is ensured via long-distance electron transport through a network of conductive fibers that run in the shared cell envelope of the centimeter-long filament. Here we investigate how this unique electrogenic metabolism is linked to filament growth and cell division. Combining dual-label stable isotope probing (13C and 15N), nanoscale secondary ion mass spectrometry, fluorescence microscopy and genome analysis, we find that the cell cycle of cable bacteria cells is highly comparable to that of other, single-celled Gram-negative bacteria. However, the timing of cell growth and division appears to be tightly and uniquely controlled by long-distance electron transport, as cell division within an individual filament shows a remarkable synchronicity that extends over a millimeter length scale. To explain this, we propose the "oxygen pacemaker" model in which a filament only grows when performing long-distance transport, and the latter is only possible when a filament has access to oxygen so it can discharge electrons from its internal electrical network.

16.
R Soc Open Sci ; 8(12): 210949, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34909214

RESUMO

Baleen from mysticete whales is a well-preserved proteinaceous material that can be used to identify migrations and feeding habits for species whose migration pathways are unknown. Analysis of δ13C and δ15N values from bulk baleen have been used to infer migration patterns for individuals. However, this approach has fallen short of identifying migrations between regions as it is difficult to determine variations in isotopic shifts without temporal sampling of prey items. Here, we apply analysis of δ15N values of amino acids to five baleen plates belonging to three species, revealing novel insights on trophic position, metabolic state and migration between regions. Humpback and minke whales had higher reconstructed trophic levels than fin whales (3.7-3.8 versus 3-3.2, respectively) as expected due to different feeding specialization. Isotopic niche areas between baleen minima and maxima were well separated, indicating regional resource use for individuals during migration that aligned with isotopic gradients in Atlantic Ocean particulate organic matter. Phenylanine δ15N values confirmed regional separation between the niche areas for two fin whales as migrations occurred and elevated glycine and threonine δ15N values suggested physiological changes due to fasting. Simultaneous resolution of trophic level and physiological changes allow for identification of regional migrations in mysticetes.

17.
Ecotoxicol Environ Saf ; 73(3): 247-53, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20045193

RESUMO

Species sensitivity distributions (SSDs) are statistical distributions that are used to estimate the potentially affected fraction (PAF) of species at a given toxicant concentration, the hazardous concentration for that fraction of species (HC(PAF)). Here, we use an aquatic food web model that includes 14 phytoplankton and 6 zooplankton species to estimate the number of species experiencing a biomass reduction when the food web is exposed to the HC(PAF) and this for 1000 hypothetical toxicants and for PAF=5-30%. When choosing a 20% decrease as a cut-off to categorize a species' biomass as affected, 0-1 and 2-5 out of the 20 species were affected at the HC(5) and HC(30), respectively. From this, it can be concluded that the PAF is a relatively good estimator of the number of affected species. However, when phytoplankton species experiencing >or=20% biomass increase were also classified as affected, the number of affected species predicted by the food web model varied strongly among toxicants for PAF >5, with 2-16 out of 20 species affected at the HC(30). Phytoplankton species with extreme (both high and low) values for uptake rates and light limitation constants experienced smaller effects on their biomass than phytoplankton species with more average parameter values. We conclude that, next to measures of toxicity, ecological characteristics of species may help understanding ecological effects occurring in ecosystems also.


Assuntos
Cadeia Alimentar , Fitoplâncton/metabolismo , Poluentes Químicos da Água/metabolismo , Xenobióticos/metabolismo , Zooplâncton/metabolismo , Animais , Biodiversidade , Biomassa , Monitoramento Ambiental/estatística & dados numéricos , Modelos Biológicos , Fitoplâncton/química , Valor Preditivo dos Testes , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Xenobióticos/análise , Xenobióticos/toxicidade , Zooplâncton/química
18.
Sci Rep ; 9(1): 17669, 2019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-31776462

RESUMO

The carbon fluxes between phytoplankton and heterotrophic bacterioplankton were studied in two coastal oligotrophic sites in the NW Mediterranean. Phytoplankton and bacterial production rates were measured under natural conditions using different methods. In the Bay of Villefranche, the temporal variability revealed net heterotrophy in July-October and net autotrophy in December-March. The spatial variability was studied in the Bay of Palma, showing net autotrophic areas in the west and heterotrophic areas in the east. On average bacterial respiration, represented 62% of the total community respiration. Bacterial growth efficiency (BGE) values were significantly higher in autotrophic conditions than in heterotrophic ones. During autotrophic periods, dissolved primary production (DPP) was enough to sustained bacterial metabolism, although it showed a positive correlation with organic carbon stock (DOC). Under heterotrophic conditions, DPP did not sustain bacterial metabolism but bacterial respiration correlated with DPP and bacterial production with DOC. Temperature affected positively, DOC, BGE, bacterial respiration and production when the trophic status was autotrophic. To summarize, the response of bacterial metabolism to temperature and carbon sources depends on the trophic status within these oligotrophic coastal systems.

19.
Nat Commun ; 9(1): 2877, 2018 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-30038400

RESUMO

The Middle Eocene Climatic Optimum (MECO) represents a ~500-kyr period of global warming ~40 million years ago and is associated with a rise in atmospheric CO2 concentrations, but the cause of this CO2 rise remains enigmatic. Here we show, based on osmium isotope ratios (187Os/188Os) of marine sediments and published records of the carbonate compensation depth (CCD), that the continental silicate weathering response to the inferred CO2 rise and warming was strongly diminished during the MECO-in contrast to expectations from the silicate weathering thermostat hypothesis. We surmise that global early and middle Eocene warmth gradually diminished the weatherability of continental rocks and hence the strength of the silicate weathering feedback, allowing for the prolonged accumulation of volcanic CO2 in the oceans and atmosphere during the MECO. These results are supported by carbon cycle modeling simulations, which highlight the fundamental importance of a variable weathering feedback strength in climate and carbon cycle interactions in Earth's history.

20.
PLoS One ; 13(3): e0194659, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29579118

RESUMO

The cold-water coral Lophelia pertusa is an ecosystem engineer that builds reef structures on the seafloor. The interaction of the reef topography with hydrodynamics is known to enhance the supply of suspended food sources to the reef communities. However, the reef framework is also a substrate for other organisms that may compete for the very same suspended food sources. Here, we used the passive suspension feeder Lophelia pertusa and the active suspension feeding sponge Hymedesmia coriacea as model organisms to study niche overlap using isotopically-enriched algae and bacteria as suspended food sources. The coral and the sponge were fed with a combination of 13C-enriched bacteria/15N-enriched algae or 15N-enriched bacteria/13C-enriched algae, which was subsequently traced into bulk tissue, coral skeleton and dissolved inorganic carbon (i.e. respiration). Both the coral and the sponge assimilated and respired the suspended bacteria and algae, indicating niche overlap between these species. The assimilation rates of C and N into bulk tissue of specimens incubated separately were not significantly different from assimilation rates during incubations with co-occurring corals and sponges. Hence, no evidence for exploitative resource competition was found, but this is likely due to the saturating experimental food concentration that was used. We do not rule out that exploitative competition occurs in nature during periods of low food concentrations. Food assimilation and respiration rates of the sponge were almost an order of magnitude higher than those of the cold-water coral. We hypothesize that the active suspension feeding mode of the sponge explains the observed differences in resource uptake as opposed to the passive suspension feeding mode of the cold-water coral. These feeding mode differences may set constraints on suitable habitats for cold-water corals and sponges in their natural habitats.


Assuntos
Antozoários/metabolismo , Poríferos/metabolismo , Ração Animal , Animais , Antozoários/química , Antozoários/crescimento & desenvolvimento , Bactérias/química , Bactérias/metabolismo , Isótopos de Carbono/química , Clorófitas/química , Clorófitas/metabolismo , Recifes de Corais , Ecossistema , Marcação por Isótopo , Isótopos de Nitrogênio/química , Poríferos/química , Poríferos/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA