Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Cell ; 155(4): 869-80, 2013 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-24209624

RESUMO

Variability in gene expression contributes to phenotypic heterogeneity even in isogenic populations. Here, we used the stereotyped, Wnt signaling-dependent development of the Caenorhabditis elegans Q neuroblast to probe endogenous mechanisms that control gene expression variability. We found that the key Hox gene that orients Q neuroblast migration exhibits increased gene expression variability in mutants in which Wnt pathway activity has been perturbed. Distinct features of the gene expression distributions prompted us on a systematic search for regulatory interactions, revealing a network of interlocked positive and negative feedback loops. Interestingly, positive feedback appeared to cooperate with negative feedback to reduce variability while keeping the Hox gene expression at elevated levels. A minimal model correctly predicts the increased gene expression variability across mutants. Our results highlight the influence of gene network architecture on expression variability and implicate feedback regulation as an effective mechanism to ensure developmental robustness.


Assuntos
Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Variação Genética , Via de Sinalização Wnt , Animais , Caenorhabditis elegans/citologia , Proteínas de Caenorhabditis elegans/genética , Movimento Celular , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Retroalimentação Fisiológica , Receptores Frizzled/genética , Receptores Frizzled/metabolismo , Redes Reguladoras de Genes , Glicoproteínas/genética , Proteínas de Homeodomínio/genética , Fatores de Transcrição/genética , Proteínas Wnt
2.
Proc Natl Acad Sci U S A ; 121(25): e2318838121, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38870057

RESUMO

Hertwig's rule states that cells divide along their longest axis, usually driven by forces acting on the mitotic spindle. Here, we show that in contrast to this rule, microtubule-based pulling forces in early Caenorhabditis elegans embryos align the spindle with the short axis of the cell. We combine theory with experiments to reveal that in order to correct this misalignment, inward forces generated by the constricting cytokinetic ring rotate the entire cell until the spindle is aligned with the cell's long axis. Experiments with slightly compressed mouse zygotes indicate that this cytokinetic ring-driven mechanism of ensuring Hertwig's rule is general for cells capable of rotating inside a confining shell, a scenario that applies to early cell divisions of many systems.


Assuntos
Caenorhabditis elegans , Fuso Acromático , Animais , Caenorhabditis elegans/embriologia , Camundongos , Fuso Acromático/metabolismo , Microtúbulos/metabolismo , Citocinese/fisiologia , Rotação , Zigoto/metabolismo , Zigoto/citologia , Zigoto/crescimento & desenvolvimento , Embrião não Mamífero/citologia , Desenvolvimento Embrionário/fisiologia , Modelos Biológicos
3.
Biophys J ; 123(8): 1015-1029, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38486450

RESUMO

To survive, adapt, and develop, cells respond to external and internal stimuli by tightly regulating transcription. Transcriptional regulation involves the combinatorial binding of a repertoire of transcription factors to DNA, which often results in switch-like binary outputs akin to Boolean logic gates. Recent experimental studies have demonstrated that in eukaryotes, transcription factor binding to DNA often involves energy expenditure, thereby driving the system out of equilibrium. The governing principles of transcriptional logic operations out of equilibrium remain unexplored. Here, we employ a simple two-input, single-locus model of transcription that can accommodate both equilibrium and nonequilibrium mechanisms. Using this model, we find that nonequilibrium regimes can give rise to all the logic operations accessible in equilibrium. Strikingly, energy expenditure alters the regulatory function of the two transcription factors in a mutually exclusive manner. This allows for the emergence of new logic operations that are inaccessible in equilibrium. Overall, our results show that energy expenditure can expand the range of cellular decision-making without the need for more complex promoter architectures.


Assuntos
Lógica , Fatores de Transcrição , Fatores de Transcrição/metabolismo , Regiões Promotoras Genéticas , DNA/genética
4.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33972425

RESUMO

Proper left-right symmetry breaking is essential for animal development, and in many cases, this process is actomyosin-dependent. In Caenorhabditis elegans embryos active torque generation in the actomyosin layer promotes left-right symmetry breaking by driving chiral counterrotating cortical flows. While both Formins and Myosins have been implicated in left-right symmetry breaking and both can rotate actin filaments in vitro, it remains unclear whether active torques in the actomyosin cortex are generated by Formins, Myosins, or both. We combined the strength of C. elegans genetics with quantitative imaging and thin film, chiral active fluid theory to show that, while Non-Muscle Myosin II activity drives cortical actomyosin flows, it is permissive for chiral counterrotation and dispensable for chiral symmetry breaking of cortical flows. Instead, we find that CYK-1/Formin activation in RhoA foci is instructive for chiral counterrotation and promotes in-plane, active torque generation in the actomyosin cortex. Notably, we observe that artificially generated large active RhoA patches undergo rotations with consistent handedness in a CYK-1/Formin-dependent manner. Altogether, we conclude that CYK-1/Formin-dependent active torque generation facilitates chiral symmetry breaking of actomyosin flows and drives organismal left-right symmetry breaking in the nematode worm.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Córtex Cerebral/metabolismo , Forminas/metabolismo , Transdução de Sinais/fisiologia , Proteína rhoA de Ligação ao GTP/metabolismo , Actomiosina/genética , Actomiosina/metabolismo , Animais , Animais Geneticamente Modificados , Blastômeros/citologia , Blastômeros/metabolismo , Padronização Corporal/genética , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Córtex Cerebral/embriologia , Embrião não Mamífero/citologia , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Forminas/genética , Lateralidade Funcional/genética , Lateralidade Funcional/fisiologia , Transdução de Sinais/genética , Torque , Proteína rhoA de Ligação ao GTP/genética
5.
Development ; 146(18)2019 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-31488562

RESUMO

Directional migration of neurons and neuronal precursor cells is a central process in nervous system development. In the nematode Caenorhabditis elegans, the two Q neuroblasts polarize and migrate in opposite directions along the anteroposterior body axis. Several key regulators of Q cell polarization have been identified, including MIG-21, DPY-19/DPY19L1, the netrin receptor UNC-40/DCC, the Fat-like cadherin CDH-4 and CDH-3/Fat, which we describe in this study. How these different transmembrane proteins act together to direct Q neuroblast polarization and migration is still largely unknown. Here, we demonstrate that MIG-21 and DPY-19, CDH-3 and CDH-4, and UNC-40 define three distinct pathways that have partially redundant roles in protrusion formation, but also separate functions in regulating protrusion direction. Moreover, we show that the MIG-21, DPY-19 and Fat-like cadherin pathways control the localization and clustering of UNC-40 at the leading edge of the polarizing Q neuroblast, and that this is independent of the UNC-40 ligands UNC-6/netrin and MADD-4. Our results provide insight into a novel mechanism for ligand-independent localization of UNC-40 that directs the activity of UNC-40 along the anteroposterior axis.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Moléculas de Adesão Celular/metabolismo , Polaridade Celular , Neurônios/citologia , Neurônios/metabolismo , Animais , Caenorhabditis elegans/metabolismo , Movimento Celular , Centrossomo/metabolismo , Ligantes , Transdução de Sinais
6.
Development ; 139(12): 2234-45, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22619391

RESUMO

Coordinated movement depends on the creation of synapses between specific neurons in the motor circuit. In C. elegans, this important decision is regulated by the UNC-4 homeodomain protein. unc-4 mutants are unable to execute backward locomotion because VA motor neurons are mis-wired with inputs normally reserved for their VB sisters. We have proposed that UNC-4 functions in VAs to block expression of VB genes. This model is substantiated by the finding that ectopic expression of the VB gene ceh-12 (encoding a homolog of the homeodomain protein HB9) in unc-4 mutants results in the mis-wiring of posterior VA motor neurons with VB-like connections. Here, we show that VA expression of CEH-12 depends on a nearby source of the Wnt protein EGL-20. Our results indicate that UNC-4 prevents VAs from responding to a local EGL-20 cue by disabling a canonical Wnt signaling cascade involving the Frizzled receptors MIG-1 and MOM-5. CEH-12 expression in VA motor neurons is also opposed by a separate pathway that includes the Wnt ligand LIN-44. This work has revealed a transcriptional mechanism for modulating the sensitivity of specific neurons to diffusible Wnt ligands and thereby defines distinct patterns of synaptic connectivity. The existence of comparable Wnt gradients in the vertebrate spinal cord could reflect similar roles for Wnt signaling in vertebrate motor circuit assembly.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Homeodomínio/metabolismo , Neurônios Motores/metabolismo , Rede Nervosa/metabolismo , Proteínas Nucleares/metabolismo , Sinapses/metabolismo , Via de Sinalização Wnt , Animais , Biomarcadores/metabolismo , Caenorhabditis elegans/genética , Junções Comunicantes/metabolismo , Genes de Helmintos/genética , Glicoproteínas/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Interneurônios/metabolismo , Modelos Anatômicos , Movimento/fisiologia , Receptores Wnt/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Fatores de Transcrição , Proteínas Wnt
7.
Development ; 138(14): 2915-24, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21653614

RESUMO

The migration of neuroblasts along the anteroposterior body axis of C. elegans is controlled by multiple Wnts that act partially redundantly to guide cells to their precisely defined final destinations. How positional information is specified by this system is, however, still largely unknown. Here, we used a novel fluorescent in situ hybridization methods to generate a quantitative spatiotemporal expression map of the C. elegans Wnt genes. We found that the five Wnt genes are expressed in a series of partially overlapping domains along the anteroposterior axis, with a predominant expression in the posterior half of the body. Furthermore, we show that a secreted Frizzled-related protein is expressed at the anterior end of the body axis, where it inhibits Wnt signaling to control neuroblast migration. Our findings reveal that a system of regionalized Wnt gene expression and anterior Wnt inhibition guides the highly stereotypic migration of neuroblasts in C. elegans. Opposing expression of Wnts and Wnt inhibitors has been observed in basal metazoans and in the vertebrate neurectoderm. Our results in C. elegans support the notion that a system of posterior Wnt signaling and anterior Wnt inhibition is an evolutionarily conserved principle of primary body axis specification.


Assuntos
Padronização Corporal/fisiologia , Caenorhabditis elegans/embriologia , Movimento Celular/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Glicoproteínas/metabolismo , Neurônios/fisiologia , Transdução de Sinais/fisiologia , Proteínas Wnt/metabolismo , Animais , Clonagem Molecular , Hibridização in Situ Fluorescente , Peptídeos e Proteínas de Sinalização Intracelular , Neurônios/citologia , Plasmídeos/genética
8.
PLoS Genet ; 7(11): e1002362, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22102824

RESUMO

Cell proliferation and differentiation are regulated in a highly coordinated and inverse manner during development and tissue homeostasis. Terminal differentiation usually coincides with cell cycle exit and is thought to engage stable transcriptional repression of cell cycle genes. Here, we examine the robustness of the post-mitotic state, using Caenorhabditis elegans muscle cells as a model. We found that expression of a G1 Cyclin and CDK initiates cell cycle re-entry in muscle cells without interfering with the differentiated state. Cyclin D/CDK4 (CYD-1/CDK-4) expression was sufficient to induce DNA synthesis in muscle cells, in contrast to Cyclin E/CDK2 (CYE-1/CDK-2), which triggered mitotic events. Tissue-specific gene-expression profiling and single molecule FISH experiments revealed that Cyclin D and E kinases activate an extensive and overlapping set of cell cycle genes in muscle, yet failed to induce some key activators of G1/S progression. Surprisingly, CYD-1/CDK-4 also induced an additional set of genes primarily associated with growth and metabolism, which were not activated by CYE-1/CDK-2. Moreover, CYD-1/CDK-4 expression also down-regulated a large number of genes enriched for catabolic functions. These results highlight distinct functions for the two G1 Cyclin/CDK complexes and reveal a previously unknown activity of Cyclin D/CDK-4 in regulating metabolic gene expression. Furthermore, our data demonstrate that many cell cycle genes can still be transcriptionally induced in post-mitotic muscle cells, while maintenance of the post-mitotic state might depend on stable repression of a limited number of critical cell cycle regulators.


Assuntos
Caenorhabditis elegans/genética , Ciclo Celular/genética , Ciclina D/genética , Ciclina D/metabolismo , Ciclina E/genética , Quinase 2 Dependente de Ciclina/genética , Quinase 4 Dependente de Ciclina/genética , Células Musculares/citologia , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/metabolismo , Diferenciação Celular , Proliferação de Células , Ciclina E/metabolismo , Quinase 2 Dependente de Ciclina/metabolismo , Quinase 4 Dependente de Ciclina/metabolismo , Replicação do DNA/genética , Regulação da Expressão Gênica no Desenvolvimento , Células Musculares/metabolismo , Especificidade de Órgãos/genética
9.
Dev Biol ; 361(2): 338-48, 2012 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-22074987

RESUMO

Wnt proteins are secreted signaling molecules that play a central role in development and adult tissue homeostasis. Although several Wnt signal transduction mechanisms have been described in detail, it is still largely unknown how cells are specified to adopt such different Wnt signaling responses. Here, we have used the stereotypic migration of the C. elegans Q neuroblasts as a model to study how two initially equivalent cells are instructed to activate either ß-catenin dependent or independent Wnt signaling pathways to control the migration of their descendants along the anteroposterior axis. We find that the specification of this difference in Wnt signaling response is dependent on the thrombospondin repeat containing protein MIG-21, which acts together with the netrin receptor UNC-40/DCC to control an initial left-right asymmetric polarization of the Q neuroblasts. Furthermore, we show that the direction of this polarization determines the threshold for Wnt/ß-catenin signaling, with posterior polarization sensitizing for activation of this pathway. We conclude that MIG-21 and UNC-40 control the asymmetry in Wnt signaling response by restricting posterior polarization to one of the two Q neuroblasts.


Assuntos
Padronização Corporal , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/citologia , Movimento Celular , Neurônios/citologia , Sequências Repetitivas de Aminoácidos , Via de Sinalização Wnt , Animais , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/química , Polaridade Celular , Espaço Extracelular/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Membrana/metabolismo , Receptores de Netrina , Neurônios/metabolismo , Receptores de Superfície Celular/metabolismo , Trombospondinas/química
10.
Elife ; 92020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32644039

RESUMO

Proper positioning of cells is essential for many aspects of development. Daughter cell positions can be specified via orienting the cell division axis during cytokinesis. Rotatory actomyosin flows during division have been implied in specifying and reorienting the cell division axis, but how general such reorientation events are, and how they are controlled, remains unclear. We followed the first nine divisions of Caenorhabditis elegans embryo development and demonstrate that chiral counter-rotating flows arise systematically in early AB lineage, but not in early P/EMS lineage cell divisions. Combining our experiments with thin film active chiral fluid theory we identify a mechanism by which chiral counter-rotating actomyosin flows arise in the AB lineage only, and show that they drive lineage-specific spindle skew and cell reorientation events. In conclusion, our work sheds light on the physical processes that underlie chiral morphogenesis in early development.


Assuntos
Actomiosina/metabolismo , Caenorhabditis elegans/embriologia , Divisão Celular , Linhagem da Célula , Embrião não Mamífero/embriologia , Actomiosina/química , Animais , Fenômenos Bioquímicos , Caenorhabditis elegans/química , Caenorhabditis elegans/metabolismo , Embrião não Mamífero/metabolismo
11.
Curr Opin Cell Biol ; 38: 24-30, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26829488

RESUMO

Chirality or mirror asymmetry is a common theme in biology found in organismal body plans, tissue patterns and even in individual cells. In many cases the emergence of chirality is driven by actin cytoskeletal dynamics. Although it is well established that the actin cytoskeleton generates rotational forces at the molecular level, we are only beginning to understand how this can result in chiral behavior of the entire actin network in vivo. In this review, we will give an overview of actin driven chiralities across different length scales known until today. Moreover, we evaluate recent quantitative models demonstrating that chiral symmetry breaking of cells can be achieved by properly aligning molecular-scale torque generation processes in the actomyosin cytoskeleton.


Assuntos
Actomiosina/química , Citoesqueleto de Actina/química , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Actomiosina/metabolismo , Animais , Humanos , Estereoisomerismo , Torque
12.
WormBook ; : 1-23, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25317540

RESUMO

During the first stage of larval development, the Q neuroblasts and their descendants migrate to well-defined positions along the anteroposterior body axis, where they differentiate into sensory neurons and interneurons. The two Q neuroblasts are initially present at similar positions on the left and right lateral side, but this symmetry is broken when the Q neuroblast on the left side (QL) polarizes towards the posterior and the Q neuroblast on the right side (QR) towards the anterior. This left-right asymmetry is maintained when the descendants of the two Q neuroblasts migrate to their final positions in the posterior and anterior. The mechanisms that establish this asymmetry and control the migration of the Q descendants along the anteroposterior axis are surprisingly complex and include interplay between Wnt signaling pathways, homeotic genes, and the basic cell migration and polarity machinery. Here, we will give an overview of what is currently known about the mechanisms that mediate and control the development and migration of the Q neuroblasts and their descendants.


Assuntos
Caenorhabditis elegans/citologia , Movimento Celular , Células-Tronco Neurais/citologia , Animais , Padronização Corporal , Caenorhabditis elegans/embriologia
13.
Dev Cell ; 31(2): 188-201, 2014 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-25373777

RESUMO

Members of the Wnt family of secreted signaling proteins are key regulators of cell migration and axon guidance. In the nematode C. elegans, the migration of the QR neuroblast descendants requires multiple Wnt ligands and receptors. We found that the migration of the QR descendants is divided into three sequential phases that are each mediated by a distinct Wnt signaling mechanism. Importantly, the transition from the first to the second phase, which is the main determinant of the final position of the QR descendants along the anteroposterior body axis, is mediated through a cell-autonomous process in which the time-dependent expression of a Wnt receptor turns on the canonical Wnt/ß-catenin signaling response that is required to terminate long-range anterior migration. Our results show that, in addition to direct guidance of cell migration by Wnt morphogenic gradients, cell migration can also be controlled indirectly through cell-intrinsic modulation of Wnt signaling responses.


Assuntos
Caenorhabditis elegans/crescimento & desenvolvimento , Movimento Celular/genética , Células-Tronco Neurais/fisiologia , Proteínas Wnt/metabolismo , Via de Sinalização Wnt/genética , Animais , Caenorhabditis elegans/citologia , Proteínas de Caenorhabditis elegans/biossíntese , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Polaridade Celular , Receptores Frizzled/biossíntese , Receptores Frizzled/metabolismo , Regulação da Expressão Gênica/genética , Glicoproteínas/biossíntese , Glicoproteínas/genética , Glicoproteínas/metabolismo , Proteínas de Homeodomínio/genética , Peptídeos e Proteínas de Sinalização Intracelular/biossíntese , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Morfogênese , Células-Tronco Neurais/citologia , Fosfoproteínas/metabolismo , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/genética , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo , Receptores Acoplados a Proteínas G/biossíntese , Fatores de Transcrição/genética , Proteínas Wnt/biossíntese , beta Catenina/metabolismo
14.
Cell Signal ; 26(1): 19-31, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24056045

RESUMO

Secretion of Wnt proteins is mediated by the Wnt sorting receptor Wls, which transports Wnt from the Golgi to the cell surface for release. To maintain efficient Wnt secretion, Wls is recycled back to the trans-Golgi network (TGN) through a retromer dependent endosome to TGN retrieval pathway. It has recently been shown that this is mediated by an alternative retromer pathway in which the sorting nexin SNX3 interacts with the cargo-selective subcomplex of the retromer to sort Wls into a retrieval pathway that is morphologically distinct from the classical SNX-BAR dependent retromer pathway. Here, we investigated how sorting of Wls between the two different retromer pathways is specified. We found that when the function of the cargo-selective subcomplex of the retromer is partially disrupted, Wnt secretion can be restored by interfering with the maturation of late endosomes to lysosomes. This leads to an accumulation of Wls in late endosomes and facilitates the retrieval of Wls through a SNX-BAR dependent retromer pathway. Our results are consistent with a model in which spatial separation of the SNX3 and SNX-BAR retromer complexes along the endosomal maturation pathway as well as cargo-specific mechanisms contribute to the selective retrieval of Wls through the SNX3 retromer pathway.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Endossomos/metabolismo , Mutação/genética , Proteínas Wnt/metabolismo , Animais , Caenorhabditis elegans/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Técnicas de Silenciamento de Genes , Genes Dominantes , Modelos Biológicos , Subunidades Proteicas/genética , Transdução de Sinais , Transgenes
15.
Nat Cell Biol ; 13(8): 914-923, 2011 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-21725319

RESUMO

Wnt proteins are lipid-modified glycoproteins that play a central role in development, adult tissue homeostasis and disease. Secretion of Wnt proteins is mediated by the Wnt-binding protein Wntless (Wls), which transports Wnt from the Golgi network to the cell surface for release. It has recently been shown that recycling of Wls through a retromer-dependent endosome-to-Golgi trafficking pathway is required for efficient Wnt secretion, but the mechanism of this retrograde transport pathway is poorly understood. Here, we report that Wls recycling is mediated through a retromer pathway that is independent of the retromer sorting nexins SNX1-SNX2 and SNX5-SNX6. We have found that the unrelated sorting nexin, SNX3, has an evolutionarily conserved function in Wls recycling and Wnt secretion and show that SNX3 interacts directly with the cargo-selective subcomplex of the retromer to sort Wls into a morphologically distinct retrieval pathway. These results demonstrate that SNX3 is part of an alternative retromer pathway that functionally separates the retrograde transport of Wls from other retromer cargo.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Nexinas de Classificação/metabolismo , Proteínas Wnt/metabolismo , Animais , Animais Geneticamente Modificados , Transporte Biológico Ativo , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/metabolismo , Drosophila/genética , Drosophila/crescimento & desenvolvimento , Drosophila/metabolismo , Endossomos/metabolismo , Células HeLa , Humanos , Modelos Biológicos , Interferência de RNA , Transdução de Sinais , Nexinas de Classificação/antagonistas & inibidores , Nexinas de Classificação/genética , Rede trans-Golgi/metabolismo
16.
PLoS One ; 5(5): e10532, 2010 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-20479883

RESUMO

BACKGROUND: The Notch receptor links cell fate decisions of one cell to that of the immediate cellular neighbor. In humans, malfunction of Notch signaling results in diseases and congenital disorders. Structural information is essential for gaining insight into the mechanism of the receptor as well as for potentially interfering with its function for therapeutic purposes. METHODOLOGY/PRINCIPAL FINDINGS: We used the Affinity Grid approach to prepare specimens of the Notch extracellular domain (NECD) of the Drosophila Notch and human Notch1 receptors suitable for analysis by electron microscopy and three-dimensional (3D) image reconstruction. The resulting 3D density maps reveal that the NECD structure is conserved across species. We show that the NECD forms a dimer and adopts different yet defined conformations, and we identify the membrane-proximal region of the receptor and its ligand-binding site. CONCLUSIONS/SIGNIFICANCE: Our results provide direct and unambiguous evidence that the NECD forms a dimer. Our studies further show that the NECD adopts at least three distinct conformations that are likely related to different functional states of the receptor. These findings open the way to now correlate mutations in the NECD with its oligomeric state and conformation.


Assuntos
Drosophila melanogaster/metabolismo , Espaço Extracelular/química , Multimerização Proteica , Receptores Notch/química , Receptores Notch/ultraestrutura , Animais , Humanos , Microscopia Eletrônica , Estrutura Terciária de Proteína , Receptores Notch/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA