Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Clin Microbiol ; 61(8): e0043823, 2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37395662

RESUMO

Bacteria of the genus Brucella are facultative intracellular parasites that cause brucellosis, a severe animal and human disease. Recently, a group of taxonomists merged the brucellae with the primarily free-living, phylogenetically related Ochrobactrum spp. in the genus Brucella. This change, founded only on global genomic analysis and the fortuitous isolation of some opportunistic Ochrobactrum spp. from medically compromised patients, has been automatically included in culture collections and databases. We argue that clinical and environmental microbiologists should not accept this nomenclature, and we advise against its use because (i) it was presented without in-depth phylogenetic analyses and did not consider alternative taxonomic solutions; (ii) it was launched without the input of experts in brucellosis or Ochrobactrum; (iii) it applies a non-consensus genus concept that disregards taxonomically relevant differences in structure, physiology, population structure, core-pangenome assemblies, genome structure, genomic traits, clinical features, treatment, prevention, diagnosis, genus description rules, and, above all, pathogenicity; and (iv) placing these two bacterial groups in the same genus creates risks for veterinarians, medical doctors, clinical laboratories, health authorities, and legislators who deal with brucellosis, a disease that is particularly relevant in low- and middle-income countries. Based on all this information, we urge microbiologists, bacterial collections, genomic databases, journals, and public health boards to keep the Brucella and Ochrobactrum genera separate to avoid further bewilderment and harm.


Assuntos
Brucella , Ochrobactrum , Ochrobactrum/classificação , Ochrobactrum/genética , Ochrobactrum/patogenicidade , Ochrobactrum/fisiologia , Brucella/classificação , Brucella/genética , Brucella/patogenicidade , Brucella/fisiologia , Terminologia como Assunto , Filogenia , Brucelose/tratamento farmacológico , Brucelose/microbiologia , Humanos , Infecções Oportunistas/microbiologia
2.
G3 (Bethesda) ; 14(8)2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-38839049

RESUMO

There are a staggering number of publicly available bacterial genome sequences (at writing, 2.0 million assemblies in NCBI's GenBank alone), and the deposition rate continues to increase. This wealth of data begs for phylogenetic analyses to place these sequences within an evolutionary context. A phylogenetic placement not only aids in taxonomic classification but informs the evolution of novel phenotypes, targets of selection, and horizontal gene transfer. Building trees from multi-gene codon alignments is a laborious task that requires bioinformatic expertise, rigorous curation of orthologs, and heavy computation. Compounding the problem is the lack of tools that can streamline these processes for building trees from large-scale genomic data. Here we present OrthoPhyl, which takes bacterial genome assemblies and reconstructs trees from whole genome codon alignments. The analysis pipeline can analyze an arbitrarily large number of input genomes (>1200 tested here) by identifying a diversity-spanning subset of assemblies and using these genomes to build gene models to infer orthologs in the full dataset. To illustrate the versatility of OrthoPhyl, we show three use cases: E. coli/Shigella, Brucella/Ochrobactrum and the order Rickettsiales. We compare trees generated with OrthoPhyl to trees generated with kSNP3 and GToTree along with published trees using alternative methods. We show that OrthoPhyl trees are consistent with other methods while incorporating more data, allowing for greater numbers of input genomes, and more flexibility of analysis.


Assuntos
Genoma Bacteriano , Genômica , Filogenia , Software , Genômica/métodos , Bactérias/genética , Bactérias/classificação , Biologia Computacional/métodos , Evolução Molecular
3.
Health Secur ; 22(3): 223-234, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38407830

RESUMO

Pathogens threaten human lives and disrupt economies around the world. This has been clearly illustrated by the current COVID-19 pandemic and outbreaks in livestock and food crops. To manage pathogen emergence and spread, cooperative engagement programs develop and strengthen biosafety, biosecurity, and biosurveillance capabilities among local researchers to detect pathogens. In this case study, we describe the efforts of a collaboration between the Los Alamos National Laboratory and the Uganda Virus Research Institute, the primary viral diagnostic laboratory in Uganda, to implement and ensure the sustainability of sequencing for biosurveillance. We describe the process of establishing this capability along with the lessons learned from both sides of the partnership to inform future cooperative engagement efforts in low- and middle-income countries. We found that by strengthening sequencing capabilities at the Uganda Virus Research Institute before the COVID-19 pandemic, the institute was able to successfully sequence SARS-CoV-2 samples and provide data to the scientific community. We highlight the need to strengthen and sustain capabilities through in-country training, collaborative research projects, and trust.


Assuntos
COVID-19 , Surtos de Doenças , SARS-CoV-2 , Uganda/epidemiologia , Humanos , COVID-19/epidemiologia , COVID-19/prevenção & controle , Estados Unidos/epidemiologia , Surtos de Doenças/prevenção & controle , Cooperação Internacional , Pandemias/prevenção & controle , Comportamento Cooperativo , Laboratórios/organização & administração
4.
PLoS Negl Trop Dis ; 17(10): e0011677, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37797043

RESUMO

Brucella spp. and Rift Valley fever virus (RVFV) are classified as priority zoonotic agents in Kenya, based on their public health and socioeconomic impact on the country. Data on the pathogen-specific and co-exposure levels is scarce due to limited active surveillance. This study investigated seroprevalence and co-exposure of Brucella spp. and RVFV and associated risk factors among slaughterhouse workers in Isiolo County, northern Kenya. A cross-sectional serosurvey was done in all 19 slaughterhouses in Isiolo County, enrolling 378 participants into the study. The overall seroprevalences for Brucella spp. and RVFV were 40.2% (95% CI: 35.2-45.4) and 18.3% (95% CI: 14.5-22.5), respectively while 10.3% (95% CI 7.4%-13.8%) of individuals were positive for antibodies against both Brucella spp. and RVFV. Virus neutralisation tests (VNT) confirmed anti-RVFV antibodies in 85% of ELISA-positive samples. Our seroprevalence results were comparable to community-level seroprevalences previously reported in the area. Since most of the study participants were not from livestock-keeping households, our findings attribute most of the detected infections to occupational exposure. The high exposure levels indicate slaughterhouse workers are the most at-risk population and there is need for infection, prevention, and control programs among this high-risk group. This is the first VNT confirmation of virus-neutralising antibodies among slaughterhouse workers in Isiolo County and corroborates reports of the area being a high-risk RVFV area as occasioned by previously reported outbreaks. This necessitates sensitization campaigns to enhance awareness of the risks involved and appropriate mitigation measures.


Assuntos
Brucella , Febre do Vale de Rift , Vírus da Febre do Vale do Rift , Animais , Humanos , Matadouros , Estudos Soroepidemiológicos , Quênia/epidemiologia , Estudos Transversais , Anticorpos Antivirais
5.
Zoonoses Public Health ; 69(3): 175-194, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35034427

RESUMO

Zoonotic diseases, such as brucellosis, Q fever and Rift Valley fever (RVF) caused by Brucella spp., Coxiella burnetii and RVF virus, respectively, can have devastating effects on human, livestock, and wildlife health and cause economic hardship due to morbidity and mortality in livestock. Coinfection with multiple pathogens can lead to more severe disease outcomes and altered transmission dynamics. These three pathogens can alter host immune responses likely leading to increased morbidity, mortality and pathogen transmission during coinfection. Developing countries, such as those commonly afflicted by outbreaks of brucellosis, Q fever and RVF, have high disease burden and thus common coinfections. A literature survey provided information on case reports and studies investigating coinfections involving the three focal diseases. Fifty five studies were collected demonstrating coinfections of Brucella spp., C. burnetii or RVFV with 50 different pathogens, of which 64% were zoonotic. While the literature search criteria involved 'coinfection', only 24/55 studies showed coinfections with direct pathogen detection methods (microbiology, PCR and antigen test), while the rest only reported detection of antibodies against multiple pathogens, which only indicate a history of co-exposure, not concurrent infection. These studies lack the ability to test whether coinfection leads to changes in morbidity, mortality or transmission dynamics. We describe considerations and methods for identifying ongoing coinfections to address this critical blind spot in disease risk management.


Assuntos
Brucella , Brucelose , Coinfecção , Coxiella burnetii , Febre Q , Febre do Vale de Rift , Vírus da Febre do Vale do Rift , Animais , Animais Selvagens , Brucelose/epidemiologia , Brucelose/veterinária , Coinfecção/epidemiologia , Coinfecção/veterinária , Humanos , Gado/microbiologia , Febre Q/epidemiologia , Febre Q/veterinária , Febre do Vale de Rift/epidemiologia , Estudos Soroepidemiológicos
6.
Front Genet ; 12: 716623, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34512727

RESUMO

Experimental evolution (serial passage) of Friend virus complex (FVC) in mice demonstrates phenotypic adaptation to specific host major histocompatibility complex (MHC) genotypes. These evolved viral lines show increased fitness and virulence in their host-genotype-of-passage, but display fitness and virulence tradeoffs when infecting unfamiliar host MHC genotypes. Here, we deep sequence these viral lines in an attempt to discover the genetic basis of FVC adaptation. The principal prediction for genotype-specific adaptation is that unique mutations would rise to high frequency in viral lines adapted to each host MHC genotype. This prediction was not supported by our sequencing data as most observed high-frequency variants were present in each of our independently evolved viral lines. However, using a multi-variate approach to measure divergence between viral populations, we show that populations of replicate evolved viral lines from the same MHC congenic mouse strain were more similar to one another than to lines derived from different MHC congenic mouse strains, suggesting that MHC genotype does predictably act on viral evolution in our model. Sequence analysis also revealed rampant recombination with endogenous murine leukemia virus sequences (EnMuLVs) that are encoded within the BALB/c mouse genome. The highest frequency variants in all six lines contained a 12 bp insertion from a recombinant EnMuLV source, suggesting such recombinants were either being favored by selection or were contained in a recombinational hotspot. Interestingly, they did not reach fixation, as if they are low fitness. The amount of background mutations linked to FVC/EnMuLV variable sites indicated that FVC/EnMuLV recombinants had not reached mutation selection equilibrium and thus, that EnMuLV sequences are likely continuously introgressing into the replicating viral population. These discoveries raise the question: is the expression of EnMuLV sequences in mouse splenocytes that permit recombination with exogenous FVC a pathogen or host adaptation?

7.
Front Public Health ; 9: 648424, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33732679

RESUMO

The threat of emerging and re-emerging infectious diseases continues to be a challenge to public and global health security. Cooperative biological engagement programs act to build partnerships and collaborations between scientists and health professionals to strengthen capabilities in biosurveillance. Biosurveillance is the systematic process of detecting, reporting, and responding to especially dangerous pathogens and pathogens of pandemic potential before they become outbreaks, epidemics, and pandemics. One important tool in biosurveillance is next generation sequencing. Expensive sequencing machines, reagents, and supplies make it difficult for countries to adopt this technology. Cooperative engagement programs help by providing funding for technical assistance to strengthen sequencing capabilities. Through workshops and training, countries are able to learn sequencing and bioinformatics, and implement these tools in their biosurveillance programs. Cooperative programs have an important role in building and sustaining collaborations among institutions and countries. One of the most important pieces in fostering these collaborations is trust. Trust provides the confidence that a successful collaboration will benefit all parties involved. With sequencing, this enables the sharing of pathogen samples and sequences. Obtaining global sequencing data helps to identify unknown etiological agents, track pathogen evolution and infer transmission networks throughout the duration of a pandemic. Having sequencing technology in place for biosurveillance generates the capacity to provide real-time data to understand and respond to pandemics. We highlight the need for these programs to continue to strengthen sequencing in biosurveillance. By working together to strengthen sequencing capabilities, trust can be formed, benefitting global health in the face of biological threats.


Assuntos
Biovigilância , Surtos de Doenças/prevenção & controle , Saúde Global , Pandemias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA