Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731976

RESUMO

Increasing antimicrobial resistance (AMR) challenges conventional antibiotics, prompting the search for alternatives. Extracellular vesicles (EVs) from pasteurised cattle milk offer promise, due to their unique properties. This study investigates their efficacy against five pathogenic bacteria, including Staphylococcus aureus ATCC 25923, aiming to combat AMR and to develop new therapies. EVs were characterised and tested using various methods. Co-culture experiments with S. aureus showed significant growth inhibition, with colony-forming units decreasing from 2.4 × 105 CFU/mL (single dose) to 7.4 × 104 CFU/mL (triple doses) after 12 h. Milk EVs extended lag time (6 to 9 h) and increased generation time (2.8 to 4.8 h) dose-dependently, compared to controls. In conclusion, milk EVs exhibit dose-dependent inhibition against S. aureus, prolonging lag and generation times. Despite limitations, this suggests their potential in addressing AMR.


Assuntos
Vesículas Extracelulares , Leite , Staphylococcus aureus , Vesículas Extracelulares/metabolismo , Animais , Leite/microbiologia , Staphylococcus aureus/efeitos dos fármacos , Bovinos , Antibacterianos/farmacologia , Pasteurização , Testes de Sensibilidade Microbiana
2.
Int J Mol Sci ; 23(7)2022 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-35409365

RESUMO

Psoriasis vulgaris (PsV) and psoriatic arthritis (PsA) are inflammatory diseases with unresolved pathophysiological aspects. Extracellular vesicles (EVs) play an important role in intercellular communication. We compared the miRNA contents and surface proteome of the EVs in the blood serum of PsV and PsA patients to healthy controls. Size-exclusion chromatography was used to isolate EVs from the blood serum of 12 PsV patients, 12 PsA patients and 12 healthy control subjects. EV samples were characterized and RNA sequencing was used to identify differentially enriched EV-bound miRNAs. We found 212 differentially enriched EV-bound miRNAs present in both PsV and PsA groups-a total of 13 miRNAs at FDR ≤ 0.05. The predicted target genes of these miRNAs were significantly related to lesser known but potentially disease-relevant pathways. The EV array revealed that PsV patient EV samples were significantly enriched with CD9 EV-marker compared to controls. Analysis of EV-bound miRNAs suggests that signaling via EVs in the blood serum could play a role in the pathophysiological processes of PsV and PsA. EVs may be able to fill the void in clinically applicable diagnostic and prognostic biomarkers for PsV and PsA.


Assuntos
Artrite Psoriásica , Vesículas Extracelulares , MicroRNAs , Psoríase , Artrite Psoriásica/diagnóstico , Artrite Psoriásica/genética , Biomarcadores , Vesículas Extracelulares/metabolismo , Humanos , MicroRNAs/metabolismo , Psoríase/genética , Soro/metabolismo
3.
Front Cell Dev Biol ; 12: 1382552, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38835509

RESUMO

The growing understanding of the role of extracellular vesicles (EVs) in embryo-maternal communication has sparked considerable interest in their therapeutic potential within assisted reproductive technology, particularly in enhancing implantation success. However, the major obstacle remains the large-scale production of EVs, and there is still a gap in understanding how different culture systems affect the characteristics of the EVs. In the current study, trophoblast analogue human chorionic carcinoma cell line was cultivated in both conventional monolayer culture (2D) and as spheroids in suspension culture (3D) and how the cell growth environment affects the physical, biochemical and cellular signalling properties of EVs produced by them was studied. Interestingly, the 3D system was more active in secreting EVs compared to the 2D system, while no significant differences were observed in terms of morphology, size, and classical EV protein marker expression between EVs derived from the two culture systems. There were substantial differences in the proteomic cargo profile and cellular signalling potency of EVs derived from the two culture systems. Notably, 2D EVs were more potent in inducing a cellular response in endometrial epithelial cells (EECs) compared to 3D EVs. Therefore, it is essential to recognize that the biological activity of EVs depends not only on the cell of origin but also on the cellular microenvironment of the parent cell. In conclusion, caution is warranted when selecting an EV production platform, especially for assessing the functional and therapeutic potential of EVs through in vitro studies.

4.
Vet Res Commun ; 47(2): 885-900, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36547796

RESUMO

Extracellular vesicles (EV) have been identified in uterine fluid (UF), however the bovine UF-EV profile during different phases of the oestrous cycle has not yet been established. Therefore, we compared the UF-EV, and their protein profile at follicular and luteal phases of the oestrous cycle. UF samples were collected from healthy uteri of six live and six slaughtered cows at follicular or luteal phases. Isolation of EV was performed using tangential flow filtration followed by size exclusion chromatography. EV were characterized by nanoparticle tracking analysis (NTA), fluorescence NTA, zeta potential, and transmission electron microscopy. Mass-spectrometry was used to evaluate EV protein profile from live cows. Particle concentrations (mean ± SD) were higher (P < 0.05) at follicular than at luteal phase in both live (1.01 × 108 ± 1.66 × 107 vs 7.56 × 107 ± 1.80 × 107, respectively) and slaughtered cows (1.17 × 108 ± 2.34 × 107 vs 9.12 × 107 ± 9.77 × 106, respectively). The proportion of fluorescently labelled EV varied significantly between follicular and luteal phases across live (28.9 ± 1.9% vs 19.3 ± 2.8%, respectively) and slaughtered cows (26.5 ± 6.3% vs 27.3 ± 2 .7%, respectively). In total, 41 EV proteins were differentially expressed between the phases. Some of the proteins were involved in reproductive processes, cell adhesion and proliferation, and cellular metabolic processes. The results indicated differences in bovine UF-EV concentration and protein profile at follicular and luteal phases, which would suggest that EV modulate uterine microenvironment across the oestrous cycle. Further research is needed to understand the effect of EV changes throughout the oestrous cycle.


Assuntos
Ciclo Estral , Fase Luteal , Feminino , Bovinos , Animais , Ciclo Estral/metabolismo , Fase Luteal/metabolismo , Proteômica , Útero
5.
Theriogenology ; 205: 79-86, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37094460

RESUMO

Extracellular vesicles (EVs) are membrane-bound nanoparticles that are released by different cell types and play a crucial role in the intercellular communication. They carry various biomolecular compounds such as DNA, RNA, proteins, and lipids. Given that EVs are a new element of the communication within the ovarian follicle, extensive research is needed to optimize method of their isolation. The aim of the study was to assess size-exclusion chromatography (SEC) as a tool for effective EVs isolation from porcine ovarian follicular fluid. The characterization of EVs was performed by nanoparticle tracking analysis, transmission electron microscopy, atomic force microscopy, mass spectrometry and Western blot. We determined EVs concentration, size distribution, zeta potential, morphology, purity, and marker proteins. Our results show that SEC is an effective method for isolation of EVs from porcine follicular fluid. They displayed predominantly exosome properties with sufficient purity and possibility for further functional analyses, including proteomics.


Assuntos
Exossomos , Vesículas Extracelulares , Feminino , Animais , Suínos , Líquido Folicular , Vesículas Extracelulares/química , Exossomos/metabolismo , Cromatografia em Gel/veterinária , Proteínas/metabolismo
6.
Methods Mol Biol ; 2273: 207-218, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33604856

RESUMO

Extracellular vesicles (EVs) are membrane-bound nanoparticles that are secreted by most cell types with an emerging role in cellular communication and potential as biomarkers of disease. Nanoparticle tracking analysis (NTA) is a commonly used technique to measure the size and concentration of nanoparticles, such as EVs. Here, we present two protocols for the analysis of size profile concentration, and zeta potential (ZP) of well-characterized EVs derived from human choriocarcinoma JAr cells using NTA. These protocols describe how the size profile concentration, and ZP of JAr EVs are measured using optimized settings of NTA. With good experimental practices and consistent protocol, NTA measurements of EVs can provide reliable data that could potentially translate further uses of EVs for diagnostic and therapeutic applications.


Assuntos
Vesículas Extracelulares/química , Linhagem Celular Tumoral , Coriocarcinoma/química , Coriocarcinoma/diagnóstico , Feminino , Humanos , Tamanho da Partícula , Software , Eletricidade Estática , Neoplasias Uterinas/química , Neoplasias Uterinas/diagnóstico
7.
Membranes (Basel) ; 11(10)2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34677545

RESUMO

Research on extracellular vesicles (EVs) has intensified over the past decade, including fluorescent membrane labeling of EVs. An optimal fluorescent method requires the size of EVs to be preserved after labeling. Lipophilic fluorescent dyes, such as CellMask™ Green (CMG), have been widely used for this purpose. Here, we investigated conditions affecting the optimum CMG labeling of EVs derived from human choriocarcinoma cells (JAr) and different biological fluids using fluorescence NTA (fl-NTA). The effect of CMG labeling on the size, concentration and zeta potential (ZP) on JAr EVs purified with different methods were measured along with biological fluid-derived EVs. With the increase of CMG dye concentration, a significant decrease in the mean size of fluorescent nanoparticles (fl-NPs) was observed. The ZP of fl-NPs originating from JAr cells with the lowest and highest dye concentrations showed a significant shift towards more and less negative ZP values, respectively. Differences in the concentration of fl-NPs were observed for JAr EVs purified using size-exclusion chromatography (SEC) alone and SEC in combination with tangential flow filtration. The proportion of CMG labeling of NPs varied across different biological sources. CMG labeling may be a reliable technique for the detection of EVs using fl-NTA.

8.
ACS Omega ; 5(27): 16701-16710, 2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32685837

RESUMO

Extracellular vesicles (EVs), including exosomes and microvesicles (<200 nm), play a vital role in intercellular communication and carry a net negative surface charge under physiological conditions. Zeta potential (ZP) is a popular method to measure the surface potential of EVs, while used as an indicator of surface charge, and colloidal stability influenced by surface chemistry, bioconjugation, and the theoretical model applied. Here, we investigated the effects of such factors on ZP of well-characterized EVs derived from the human choriocarcinoma JAr cells. The EVs were suspended in phosphate-buffered saline (PBS) of various phosphate ionic concentrations (0.01, 0.1, and 1 mM), with or without detergent (Tween-20), or in the presence (10 mM) of different salts (NaCl, KCl, CaCl2, and AlCl3) and at different pH values (4, 7, and 10) while the ZP was measured. The ZP changed inversely with the buffer concentration, while Tween-20 caused a significant (p < 0.05) lowering of the ZP. Moreover, the ZP was significantly (p < 0.05) less negative in the presence of ions with higher valency (Al3+/Ca2+) than in the presence of monovalent ones (Na+/K+). Besides, the ZP of EVs became less negative at acidic pH, and vice versa. The integrated data underpins the crucial role of physicochemical attributes that influence the colloidal stability of EVs.

9.
Theriogenology ; 149: 104-116, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32259747

RESUMO

Extracellular vesicles (EVs) are membrane-bound biological nanoparticles (NPs) and have gained wide attention as potential biomarkers. We aimed to isolate and characterize EVs from media conditioned by individually cultured preimplantation bovine embryos and to assess their relationship with embryo quality. Presumptive zygotes were cultured individually in 60 µl droplets of culture media, and 50 µl of media were collected from the droplets either on day 2, 5 or 8 post-fertilization. After sampling, the embryo cultures were continued in the remaining media until day 8, and the embryo development was evaluated at day 2 (cleavage), day 5 (morula stage) and day 8 (blastocyst stage). EVs were isolated using qEVsingle® columns and characterized. Based on EV Array, EVs isolated from embryo conditioned media were strongly positive for EV-markers CD9 and CD81 and weakly positive for CD63 and Alix among others. They had a cup-like shape typical to EVs as analyzed by transmission electron microscopy and spherical shape in scanning electron microscopy, and hence regarded as EVs. However, the NPs isolated from control media were negative for EV markers. Based on nanoparticle tracking analysis, at day 2, the mean concentration of EVs isolated from media conditioned by embryos that degenerated after cleaving (8.25 × 108/ml) was higher compared to that of embryos that prospectively developed to blastocysts (5.86 × 108/ml, p < 0.05). Moreover, at day 8, the concentration of EVs isolated from media conditioned by degenerating embryos (7.17 × 108/ml) was higher compared to that of blastocysts (5.68 × 108/ml, p < 0.05). Furthermore, at day 8, the mean diameter of EVs isolated from media conditioned by degenerating embryos (153.7 nm) was smaller than EVs from media conditioned by blastocysts (163.5 nm, p < 0.05). In conclusion, individually cultured preimplantation bovine embryos secrete EVs in the culture media and their concentration and size are influenced by embryo quality and may indicate their prospective development potential.


Assuntos
Bovinos/embriologia , Técnicas de Cultura Embrionária/veterinária , Embrião de Mamíferos/fisiologia , Embrião de Mamíferos/ultraestrutura , Vesículas Extracelulares/fisiologia , Animais , Biomarcadores/análise , Blastocisto/fisiologia , Blastocisto/ultraestrutura , Meios de Cultivo Condicionados , Técnicas de Cultura Embrionária/métodos , Desenvolvimento Embrionário/fisiologia , Vesículas Extracelulares/química , Fertilização in vitro/veterinária , Tetraspanina 28/análise , Tetraspanina 29/análise
10.
FEBS Open Bio ; 7(12): 1830-1842, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29226071

RESUMO

Multifunctional enzyme, type-1 (MFE1) is a monomeric enzyme with a 2E-enoyl-CoA hydratase and a 3S-hydroxyacyl-CoA dehydrogenase (HAD) active site. Enzyme kinetic data of rat peroxisomal MFE1 show that the catalytic efficiencies for converting the short-chain substrate 2E-butenoyl-CoA into acetoacetyl-CoA are much lower when compared with those of the homologous monofunctional enzymes. The mode of binding of acetoacetyl-CoA (to the hydratase active site) and the very similar mode of binding of NAD + and NADH (to the HAD part) are described and compared with those of their monofunctional counterparts. Structural comparisons suggest that the conformational flexibility of the HAD and hydratase parts of MFE1 are correlated. The possible importance of the conformational flexibility of MFE1 for its biocatalytic properties is discussed. Database: Structural data are available in PDB database under the accession number 5MGB.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA