Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(2)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36674621

RESUMO

Phosphodiesterases (PDEs) are a superfamily of evolutionarily conserved cyclic nucleotide (cAMP/cGMP)-hydrolyzing enzymes, components of transduction pathways regulating crucial aspects of cell life. Within this family, the cGMP-dependent PDE5 is the major hydrolyzing enzyme in many mammalian tissues, where it regulates a number of cellular and tissular processes. Using Kluyveromyces lactis as a model organism, the murine PDE5A1, A2 and A3 isoforms were successfully expressed and studied, evidencing, for the first time, a distinct role of each isoform in the control, modulation and maintenance of the cellular redox metabolism. Moreover, we demonstrated that the short N-terminal peptide is responsible for the tetrameric assembly of MmPDE5A1 and for the mitochondrial localization of MmPDE5A2. We also analyzed MmPDE5A1, A2 and A3 using small-angle X-ray scattering (SAXS), transmission electron microscopy (TEM), structural mass spectrometry (MS) and polyacrylamide gel electrophoresis in their native conditions (native-PAGE) and in the presence of redox agents. These analyses pointed towards the role of a few specific cysteines in the isoforms' oligomeric assembly and the loss of enzymatic activity when modified.


Assuntos
GMP Cíclico , Cisteína , Camundongos , Animais , Nucleotídeo Cíclico Fosfodiesterase do Tipo 5/metabolismo , Espalhamento a Baixo Ângulo , Difração de Raios X , Isoformas de Proteínas , GMP Cíclico/metabolismo , Mamíferos/metabolismo
2.
Semin Cell Dev Biol ; 101: 161-169, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31883993

RESUMO

We review here omics approaches including transcriptomics, proteomics, glycomics, metabolomics and interactomics, databases and computational tools for omic and multi-omic investigations of fibrosis to understand the molecular mechanisms underlying fibrogenesis and fibrosis, to identify biomarkers of diagnosis, prognosis or disease progression, and new therapeutic targets and to design new anti-fibrotic drugs. We also provide perspectives for future studies including lipid and glycosaminoglycan profiling, and the design of virtual patient models as a basis for personalised medicine and virtualisation of drug development.


Assuntos
Antifibrinolíticos/uso terapêutico , Biologia Computacional , Fibrose , Animais , Fibrose/diagnóstico , Fibrose/tratamento farmacológico , Fibrose/metabolismo , Humanos , Metabolômica , Proteômica
3.
Int J Mol Sci ; 23(22)2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36430221

RESUMO

Recent evidence indicates that the HIV-1 Integrase (IN) binds the viral genomic RNA (gRNA), playing a critical role in the morphogenesis of the viral particle and in the stability of the gRNA once in the host cell. By combining biophysical, molecular biology, and biochemical approaches, we found that the 18-residues flexible C-terminal tail of IN acts as a sensor of the peculiar apical structure of the trans-activation response element RNA (TAR), interacting with its hexaloop. We show that the binding of the whole IN C-terminal domain modifies TAR structure, exposing critical nucleotides. These modifications favour the subsequent binding of the HIV transcriptional trans-activator Tat to TAR, finally displacing IN from TAR. Based on these results, we propose that IN assists the binding of Tat to TAR RNA. This working model provides a mechanistic sketch accounting for the emerging role of IN in the early stages of proviral transcription and could help in the design of anti-HIV-1 therapeutics against this new target of the viral infectious cycle.


Assuntos
Integrase de HIV , Produtos do Gene tat do Vírus da Imunodeficiência Humana , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética , RNA Guia de Cinetoplastídeos , Integrase de HIV/genética , RNA Viral/genética , RNA Viral/metabolismo , Fatores de Transcrição
4.
Int J Mol Sci ; 23(15)2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35955722

RESUMO

3'-5' cyclic nucleotide phosphodiesterases (PDEs) are a family of evolutionarily conserved cAMP and/or cGMP hydrolyzing enzymes, components of transduction pathways regulating crucial aspects of cell life. Among them, cGMP-specific PDE5-being a regulator of vascular smooth muscle contraction-is the molecular target of several drugs used to treat erectile dysfunction and pulmonary hypertension. Production of full-length murine PDE5A isoforms in the milk-yeast Kluyveromyces lactis showed that the quaternary assembly of MmPDE5A1 is a mixture of dimers and tetramers, while MmPDE5A2 and MmPDE5A3 only assembled as dimers. We showed that the N-terminal peptide is responsible for the tetramer assembly of MmPDE5A1, while that of the MmPDE5A2 is responsible for its mitochondrial localization. Overexpression of the three isoforms alters at different levels the cAMP/cGMP equilibrium as well as the NAD(P)+/NAD(P)H balance and induces a metabolic switch from oxidative to fermentative. In particular, the mitochondrial localization of MmPDE5A2 unveiled the existence of a cAMP-cGMP signaling cascade in this organelle, for which we propose a metabolic model that could explain the role of PDE5 in some cardiomyopathies and some of the side effects of its inhibitors.


Assuntos
GMP Cíclico , Nucleotídeo Cíclico Fosfodiesterase do Tipo 5/metabolismo , NAD , 3',5'-AMP Cíclico Fosfodiesterases/metabolismo , Animais , GMP Cíclico/metabolismo , Masculino , Camundongos , NAD/metabolismo , Oxirredução , Isoformas de Proteínas/metabolismo
5.
Eur Biophys J ; 50(3-4): 501-512, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33398461

RESUMO

Fep1 is an iron-responsive GATA-type transcriptional repressor present in numerous fungi. The DNA-binding domain of this protein is characterized by the presence of two zinc fingers of the Cys2-Cys2 type and a Cys-X5-Cys-X8-Cys-X2-Cys motif located between the two zinc fingers, that is involved in binding of a [2Fe-2S] cluster. In this work, biophysical characterization of the DNA-binding domain of Pichia pastoris Fep1 and of the complex of the protein with cognate DNA has been undertaken. The results obtained by analytical ultracentrifugation sedimentation velocity, small-angle X-ray scattering and differential scanning calorimetry indicate that Fep1 is a natively unstructured protein that is able to bind DNA forming 1:1 and 2:1 complexes more compact than the individual partners. Complex formation takes place independently of the presence of a stoichiometric [2Fe-2S] cluster, suggesting that the cluster may play a role in recruiting other protein(s) required for regulation of transcription in response to changes in intracellular iron levels.


Assuntos
DNA/química , Fatores de Transcrição GATA , Ferro , Saccharomycetales , Fatores de Transcrição
6.
Biochim Biophys Acta Gen Subj ; 1862(10): 2183-2190, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30025857

RESUMO

BACKGROUND: Phosphodiesterases (PDEs) are a superfamily of evolutionary conserved cyclic nucleotides (cAMP/cGMP) hydrolysing enzymes, components of transduction pathways regulating crucial aspects of cell life. PDE5, one of these families, is the molecular target of several drugs used to treat erectile dysfunction and pulmonary hypertension. Despite its medical relevance, PDE5 macromolecular structure has only been solved for the isolated regulatory and catalytic domains. The definition of the quaternary structure of the full length PDE5 (MmPDE5A1), produced in large amounts in the yeast Kluyveromyces lactis, could greatly enhance the knowledge on its assembly/allosteric regulation and the development of new inhibitors for clinical-therapeutic applications. METHODS: Small-angle X-ray scattering (SAXS), analytical ultracentrifugation (AUC), size exclusion chromatography (SEC), native polyacrylamide gel electrophoresis (PAGE) and western blot (WB) were used to assess the assembly of PDE5A1. RESULTS: The full length MmPDE5A1 isoform is a mixture of dimers and tetramers in solution. We also report data showing that dimers and tetramers also coexist in vivo in platelets, blood components naturally containing high levels of PDE5. CONCLUSIONS: This is the first time that structural studies on the full length protein evidenced the assembly of PDE5 in tetramers in addition to the expected dimers. GENERAL SIGNIFICANCE: The assembly of PDE5 in tetramers in platelets, beside the dimers, opens the possibility to alternative assembly/allosteric regulation of this enzyme, as component of large signaling complexes, in all cellular districts in which PDE5 is present.


Assuntos
Plaquetas/enzimologia , Nucleotídeo Cíclico Fosfodiesterase do Tipo 5/química , Nucleotídeo Cíclico Fosfodiesterase do Tipo 5/metabolismo , Multimerização Proteica , Estrutura Quaternária de Proteína , Regulação Alostérica , Animais , Domínio Catalítico , Ratos , Espalhamento a Baixo Ângulo
7.
Genes Dev ; 23(8): 912-27, 2009 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-19390086

RESUMO

DNA double-strand breaks (DSBs) are among the most deleterious forms of DNA lesions in cells. Here we induced site-specific DSBs in yeast cells and monitored chromatin dynamics surrounding the DSB using Chromosome Conformation Capture (3C). We find that formation of a DSB within G1 cells is not sufficient to alter chromosome dynamics. However, DSBs formed within an asynchronous cell population result in large decreases in both intra- and interchromosomal interactions. Using live cell microscopy, we find that changes in chromosome dynamics correlate with relocalization of the DSB to the nuclear periphery. Sequestration to the periphery requires the nuclear envelope protein, Mps3p, and Mps3p-dependent tethering delays recombinational repair of a DSB and enhances gross chromosomal rearrangements. Furthermore, we show that components of the telomerase machinery are recruited to a DSB and that telomerase recruitment is required for its peripheral localization. Based on these findings, we propose that sequestration of unrepaired or slowly repaired DSBs to the nuclear periphery reflects a competition between alternative repair pathways.


Assuntos
Núcleo Celular/metabolismo , Quebras de DNA de Cadeia Dupla , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Cromatina/metabolismo , Cromossomos Fúngicos/genética , Cromossomos Fúngicos/metabolismo , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Técnicas Genéticas , Proteínas de Membrana/metabolismo , Microscopia , Proteínas Nucleares , Proteínas de Saccharomyces cerevisiae/metabolismo , Telomerase/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , Ubiquitina-Proteína Ligases
8.
Org Biomol Chem ; 13(7): 2064-77, 2015 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-25519040

RESUMO

A series of new aculeatin-like analogues were synthesized in two steps by combining two sets of building blocks. Many compounds showed inhibitory activities in vitro against Plasmodium falciparum and have helped to gain more insight into structure-activity relationships around the spirocyclohexadienone pharmacophoric scaffold. Plasmodium falciparum thioredoxin reductase (PfTrxR) has been investigated as a putative cellular target. Moreover, a new aculeatin-like scaffold without Michael acceptor properties, efficient at 0.86 µM against P. falciparum 3D7, was identified and raises the prospect of developing a new antimalarial agent.


Assuntos
Antimaláricos/economia , Antimaláricos/farmacologia , Cicloexanonas/economia , Cicloexanonas/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Compostos de Espiro/economia , Compostos de Espiro/farmacologia , Antimaláricos/química , Cicloexanonas/química , Relação Dose-Resposta a Droga , Estrutura Molecular , Testes de Sensibilidade Parasitária , Compostos de Espiro/química , Relação Estrutura-Atividade
9.
Biochem Soc Trans ; 42(6): 1768-72, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25399604

RESUMO

Peroxiredoxins (Prxs) and glutathione peroxidases (Gpxs) provide the majority of peroxides reducing activity in the cytoplasm. Both are peroxidases but differences in the chemical mechanism of reduction of oxidative agents, as well as in the reactivity of the catalytically active residues, confer peculiar features on them. Ultimately, Gpx should be regarded as an efficient peroxides scavenger having a high-reactive selenocysteine (Sec) residue. Prx, by having a low pKa cysteine, is less efficient than Gpx in reduction of peroxides under physiological conditions, but the chemistry of the sulfur together with the peculiar structural arrangement of the active site, in typical Prxs, make it suitable to sense a redox environment and to switch-in-function so as to exert holdase activity under redox-stress conditions. The complex macromolecular assembly would have evolved the chaperone holdase function and the moonlighting behaviour typical of many Prxs.


Assuntos
Evolução Biológica , Cisteína/metabolismo , Peroxirredoxinas/fisiologia , Selenocisteína/metabolismo , Biocatálise , Modelos Moleculares , Oxirredução , Peroxirredoxinas/química , Conformação Proteica
10.
Adv Healthc Mater ; 13(16): e2303280, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38445812

RESUMO

Conventional therapies for inflammatory bowel diseases are mainly based on systemic treatments which cause side effects and toxicity over long-term administration. Nanoparticles appear as a valid alternative to allow a preferential accumulation in inflamed tissues following oral administration while reducing systemic drug exposure. To increase their residence time in the inflamed intestine, the nanoparticles are here associated with a hydrogel matrix. A bioadhesive peptide-based hydrogel is mixed with nanoemulsions, creating a hybrid lipid-polymer nanocomposite. Mucopenetrating nanoemulsions of 100 nm are embedded in a scaffold constituted of the self-assembling peptide hydrogel product PuraStat. The nanocomposite is fully characterized to study the impact of lipid particles in the hydrogel structure. Rheological measurements and circular dichroism analyses are performed to investigate the system's microstructure and physical properties. Biodistribution studies demonstrate that the nanocomposite acts as a depot in the stomach and facilitates the slow release of the nanoemulsions in the intestine. Efficacy studies upon oral administration of the drug-loaded system show the improvement of the disease score in a mouse model of intestinal inflammation.


Assuntos
Hidrogéis , Peptídeos , Animais , Hidrogéis/química , Peptídeos/química , Peptídeos/farmacocinética , Peptídeos/farmacologia , Camundongos , Sistemas de Liberação de Medicamentos/métodos , Distribuição Tecidual , Nanopartículas/química , Inflamação/tratamento farmacológico , Administração Oral , Nanocompostos/química , Doenças Inflamatórias Intestinais/tratamento farmacológico , Intestinos/efeitos dos fármacos
11.
Biomolecules ; 13(3)2023 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-36979507

RESUMO

Allostery arises when a ligand-induced change in shape of a binding site of a protein is coupled to a tertiary/quaternary conformational change with a consequent modulation of functional properties. The two-state allosteric model of Monod, Wyman and Changeux [J. Mol. Biol. 1965; 12, 88-118] is an elegant and effective theory to account for protein regulation and control. Tetrameric hemoglobin (Hb), the oxygen transporter of all vertebrates, has been for decades the ideal system to test for the validity of the MWC theory. The small ligands affecting Hb's behavior (organic phosphates, protons, bicarbonate) are produced by the red blood cell during metabolism. By binding to specific sites, these messengers make Hb sensing the environment and reacting consequently. HbI and HbIV from trout and human HbA are classical cooperative models, being similar yet different. They share many fundamental features, starting with the globin fold and the quaternary assembly, and reversible cooperative O2 binding. Nevertheless, they differ in ligand affinity, binding of allosteric effectors, and stability of the quaternary assembly. Here, we recollect essential functional properties and correlate them to the tertiary and quaternary structures available in the protein databank to infer on the molecular basis of the evolution of oxygen transporters.


Assuntos
Hemoglobinas , Oxigênio , Animais , Humanos , Ligantes , Regulação Alostérica , Modelos Moleculares , Hemoglobinas/metabolismo , Oxigênio/metabolismo
12.
Biomolecules ; 13(9)2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37759676

RESUMO

Genome sequencing of the human parasite Schistosoma mansoni revealed an interesting gene superfamily, called micro-exon gene (meg), that encodes secreted MEG proteins. The genes are composed of short exons (3-81 base pairs) regularly interspersed with long introns (up to 5 kbp). This article recollects 35 S. mansoni specific meg genes that are distributed over 7 autosomes and one pair of sex chromosomes and that code for at least 87 verified MEG proteins. We used various bioinformatics tools to produce an optimal alignment and propose a phylogenetic analysis. This work highlighted intriguing conserved patterns/motifs in the sequences of the highly variable MEG proteins. Based on the analyses, we were able to classify the verified MEG proteins into two subfamilies and to hypothesize their duplication and colonization of all the chromosomes. Together with motif identification, we also proposed to revisit MEGs' common names and annotation in order to avoid duplication, to help the reproducibility of research results and to avoid possible misunderstandings.


Assuntos
Schistosoma mansoni , Humanos , Animais , Schistosoma mansoni/genética , Filogenia , Reprodutibilidade dos Testes , Éxons/genética , Mapeamento Cromossômico
13.
PLoS One ; 18(8): e0289444, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37535563

RESUMO

Micro-Exon Genes are a widespread class of genes known for their high variability, widespread in the genome of parasitic trematodes such as Schistosoma mansoni. In this study, we present a strategy that allowed us to solve the structures of three alternatively spliced isoforms from the Schistoma mansoni MEG 2.1 family for the first time. All isoforms are hydrophobic, intrinsically disordered, and recalcitrant to be expressed in high yield in heterologous hosts. We resorted to the chemical synthesis of shorter pieces, before reconstructing the entire sequence. Here, we show that isoform 1 partially folds in a-helix in the presence of trifluoroethanol while isoform 2 features two rigid elbows, that maintain the peptide as disordered, preventing any structuring. Finally, isoform 3 is dominated by the signal peptide, which folds into a-helix. We demonstrated that combining biophysical techniques, like circular dichroism and nuclear magnetic resonance at natural abundance, with in silico molecular dynamics simulation for isoform 1 only, was the key to solve the structure of MEG 2.1. Our results provide a crucial piece to the puzzle of this elusive and highly variable class of proteins.


Assuntos
Peptídeos , Schistosoma mansoni , Animais , Schistosoma mansoni/genética , Schistosoma mansoni/metabolismo , Isoformas de Proteínas/genética , Éxons/genética , Peptídeos/metabolismo
14.
Biochem Biophys Res Commun ; 425(4): 806-11, 2012 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-22889878

RESUMO

Plasmodium falciparum is the vector of the most prevalent and deadly form of malaria, and, among the Plasmodium species, it is the one with the highest rate of drug resistance. At the basis of a rational drug design project there is the selection and characterization of suitable target(s). Thioredoxin reductase, the first protection against reactive oxygen species in the erythrocytic phase of the parasite, is essential for its survival. Hence it represents a good target for the design of new anti-malarial active compounds. In this paper we present the first crystal structure of recombinant P. falciparum thioredoxin reductase (PfTrxR) at 2.9Å and discuss its differences with respect to the human orthologue. The most important one resides in the dimer interface, which offers a good binding site for selective non competitive inhibitors. The striking conservation of this feature among the Plasmodium parasites, but not among other Apicomplexa parasites neither in mammals, boosts its exploitability.


Assuntos
Plasmodium falciparum/enzimologia , Tiorredoxina Dissulfeto Redutase/química , Antimaláricos/química , Antimaláricos/farmacologia , Cristalografia por Raios X , Desenho de Fármacos , Humanos , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
15.
PLoS Genet ; 5(5): e1000478, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19424429

RESUMO

The organization of eukaryotic genomes is characterized by the presence of distinct euchromatic and heterochromatic sub-nuclear compartments. In Saccharomyces cerevisiae heterochromatic loci, including telomeres and silent mating type loci, form clusters at the nuclear periphery. We have employed live cell 3-D imaging and chromosome conformation capture (3C) to determine the contribution of nuclear positioning and heterochromatic factors in mediating associations of the silent mating type loci. We identify specific long-range interactions between HML and HMR that are dependent upon silencing proteins Sir2p, Sir3p, and Sir4p as well as Sir1p and Esc2p, two proteins involved in establishment of silencing. Although clustering of these loci frequently occurs near the nuclear periphery, colocalization can occur equally at more internal positions and is not affected in strains deleted for membrane anchoring proteins yKu70p and Esc1p. In addition, appropriate nucleosome assembly plays a role, as deletion of ASF1 or combined disruption of the CAF-1 and HIR complexes abolishes the HML-HMR interaction. Further, silencer proteins are required for clustering, but complete loss of clustering in asf1 and esc2 mutants had only minor effects on silencing. Our results indicate that formation of heterochromatic clusters depends on correctly assembled heterochromatin at the silent loci and, in addition, identify an Asf1p-, Esc2p-, and Sir1p-dependent step in heterochromatin formation that is not essential for gene silencing but is required for long-range interactions.


Assuntos
Genes Fúngicos Tipo Acasalamento , Heterocromatina/genética , Heterocromatina/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Elementos Silenciadores Transcricionais , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/metabolismo , Cromossomos Fúngicos/genética , Cromossomos Fúngicos/metabolismo , Inativação Gênica , Genes Fúngicos , Genes Fúngicos Tipo Acasalamento/genética , Imageamento Tridimensional , Modelos Genéticos , Família Multigênica , Mutação , Nucleossomos/genética , Nucleossomos/metabolismo , Saccharomyces cerevisiae/ultraestrutura
16.
J Biol Chem ; 285(42): 32557-67, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20659890

RESUMO

Schistosomiasis is the second most widespread human parasitic disease. It is principally treated with one drug, praziquantel, that is administered to 100 million people each year; less sensitive strains of schistosomes are emerging. One of the most appealing drug targets against schistosomiasis is thioredoxin glutathione reductase (TGR). This natural chimeric enzyme is a peculiar fusion of a glutaredoxin domain with a thioredoxin selenocysteine (U)-containing reductase domain. Selenocysteine is located on a flexible C-terminal arm that is usually disordered in the available structures of the protein and is essential for the full catalytic activity of TGR. In this study, we dissect the catalytic cycle of Schistosoma mansoni TGR by structural and functional analysis of the U597C mutant. The crystallographic data presented herein include the following: the oxidized form (at 1.9 Å resolution); the NADPH- and GSH-bound forms (2.3 and 1.9 Å, respectively); and a different crystal form of the (partially) reduced enzyme (3.1 Å), showing the physiological dimer and the entire C terminus of one subunit. Whenever possible, we determined the rate constants for the interconversion between the different oxidation states of TGR by kinetic methods. By combining the crystallographic analysis with computer modeling, we were able to throw further light on the mechanism of action of S. mansoni TGR. In particular, we hereby propose the putative functionally relevant conformational change of the C terminus after the transfer of reducing equivalents from NADPH to the redox sites of the enzyme.


Assuntos
Cristalografia por Raios X/métodos , Complexos Multienzimáticos/química , Complexos Multienzimáticos/metabolismo , NADH NADPH Oxirredutases/química , NADH NADPH Oxirredutases/metabolismo , Estrutura Terciária de Proteína , Schistosoma mansoni/enzimologia , Animais , Catálise , Elétrons , Humanos , Modelos Moleculares , Dados de Sequência Molecular , NADP/metabolismo , Oxirredução
17.
Matrix Biol Plus ; 12: 100081, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34505054

RESUMO

Syndecans are membrane proteoglycans regulating extracellular matrix assembly, cell adhesion and signaling. Their ectodomains can be shed from the cell surface, and act as paracrine and autocrine effectors or as competitors of full-length syndecans. We report the first biophysical characterization of the recombinant ectodomains of the four human syndecans using biophysical techniques, and show that they behave like flexible random-coil intrinsically disordered proteins, and adopt several conformation ensembles in solution. We have characterized their conformational landscapes using native mass spectrometry (MS) and ion-mobility MS, and demonstrated that the syndecan ectodomains explore the majority of their conformational landscape, from minor compact, globular-like, conformations to extended ones. We also report that the ectodomain of syndecan-4, corresponding to a natural isoform, is able to dimerize via a disulfide bond. We have generated a three-dimensional model of the C-terminus of this dimer, which supports the dimerization via a disulfide bond. Furthermore, we have mapped the NXIP adhesion motif of syndecans and their sequences involved in the formation of ternary complexes with integrins and growth factor receptors on the major conformations of their ectodomains, and shown that these sequences are not accessible in all the conformations, suggesting that only some of them are biologically active. Lastly, although the syndecan ectodomains have a far lower number of amino acid residues than their membrane partners, their intrinsic disorder and flexibility allow them to adopt extended conformations, which have roughly the same size as the cell surface receptors (e.g., integrins and growth factor receptors) they bind to.

18.
J Biol Chem ; 284(42): 28977-85, 2009 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-19710012

RESUMO

Schistosomiasis is a parasitic disease affecting over 200 million people currently treated with one drug, praziquantel. A possible drug target is the seleno-protein thioredoxin-glutathione reductase (TGR), a key enzyme in the pathway of the parasite for detoxification of reactive oxygen species. The enzyme is a unique fusion of a glutaredoxin domain with a thioredoxin reductase domain, which contains a selenocysteine (Sec) as the penultimate amino acid. Auranofin (AF), a gold-containing compound already in clinical use as an anti-arthritic drug, has been shown to inhibit TGR and to substantially reduce worm burden in mice. Using x-ray crystallography we solved (at 2.5 A resolution) the structure of wild type TGR incubated with AF. The electron density maps show that the actual inhibitor is gold, released from AF. Gold is bound at three different sites not directly involving the C-terminal Sec residue; however, because the C terminus in the electron density maps is disordered, we cannot exclude the possibility that gold may also bind to Sec. To investigate the possible role of Sec in the inactivation kinetics, we tested the effect of AF on a model enzyme of the same superfamily, i.e. the naturally Sec-lacking glutathione reductase, and on truncated TGR. We demonstrate that the role of selenium in the onset of inhibition by AF is catalytic and can be mimicked by an external source of selenium (benzeneselenol). Therefore, we propose that Sec mediates the transfer of gold from its ligands in AF to the redox-active Cys couples of TGR.


Assuntos
Antirreumáticos/química , Auranofina/química , Regulação da Expressão Gênica , Proteínas de Helminto/química , Complexos Multienzimáticos/química , NADH NADPH Oxirredutases/química , Schistosoma mansoni/metabolismo , Animais , Antirreumáticos/farmacologia , Auranofina/farmacologia , Catálise , Cristalografia por Raios X/métodos , Cisteína/química , Relação Dose-Resposta a Droga , Cinética , Modelos Moleculares , Complexos Multienzimáticos/antagonistas & inibidores , NADH NADPH Oxirredutases/antagonistas & inibidores , Oxirredução , Estrutura Terciária de Proteína , Selênio/química
19.
J Biol Chem ; 284(42): 29170-9, 2009 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-19625248

RESUMO

Cytochrome P450s are heme-containing proteins that catalyze the oxidative metabolism of many physiological endogenous compounds. Because of their unique oxygen chemistry and their key role in drug and xenobiotic metabolism, particular attention has been devoted in elucidating their mechanism of substrate recognition. In this work, we analyzed the three-dimensional structures of a monomeric cytochrome P450 from Saccharopolyspora erythraea, commonly called EryK, and the binding kinetics to its physiological ligand, erythromycin D. Three different structures of EryK were obtained: two ligand-free forms and one in complex with its substrate. Analysis of the substrate-bound structure revealed the key structural determinants involved in substrate recognition and selectivity. Interestingly, the ligand-free structures of EryK suggested that the protein may explore an open and a closed conformation in the absence of substrate. In an effort to validate this hypothesis and to investigate the energetics between such alternative conformations, we performed stopped-flow absorbance experiments. Data demonstrated that EryK binds erythromycin D via a mechanism involving at least two steps. Contrary to previously characterized cytochrome P450s, analysis of double jump mixing experiments confirmed that this complex scenario arises from a pre-existing equilibrium between the open and closed subpopulations of EryK, rather than from an induced-fit type mechanism.


Assuntos
Proteínas de Bactérias/química , Sistema Enzimático do Citocromo P-450/fisiologia , Catálise , Domínio Catalítico , Sistema Enzimático do Citocromo P-450/química , Eritromicina/química , Escherichia coli/metabolismo , Heme/química , Cinética , Ligantes , Modelos Químicos , Conformação Molecular , Oxigênio/química , Ligação Proteica , Conformação Proteica , Especificidade por Substrato
20.
Proteins ; 78(2): 259-70, 2010 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-19714775

RESUMO

Oxidative stress is a widespread challenge for living organisms, and especially so for parasitic ones, given the fact that their hosts can produce reactive oxygen species (ROS) as a mechanism of defense. Thus, long lived parasites, such as the flatworm Schistosomes, have evolved refined enzymatic systems capable of detoxifying ROS. Among these, glutathione peroxidases (Gpx) are a family of sulfur or selenium-dependent isozymes sharing the ability to reduce peroxides using the reducing equivalents provided by glutathione or possibly small proteins such as thioredoxin. As for other frontline antioxidant enzymatic systems, Gpxs are localized in the tegument of the Schistosomes, the outermost defense layer. In this article, we present the first crystal structure at 1.0 and 1.7 A resolution of two recombinant SmGpxs, carrying the active site mutations Sec43Cys and Sec43Ser, respectively. The structures confirm that this enzyme belongs to the monomeric class 4 (phospholipid hydroperoxide) Gpx. In the case of the Sec to Cys mutant, the catalytic Cys residue is oxidized to sulfonic acid. By combining static crystallography with molecular dynamics simulations, we obtained insight into the substrate binding sites and the conformational changes relevant to catalysis, proposing a role for the unusual reactivity of the catalytic residue.


Assuntos
Cristalografia por Raios X , Glutationa Peroxidase/química , Simulação de Dinâmica Molecular , Schistosoma mansoni/enzimologia , Esquistossomose mansoni/parasitologia , Sequência de Aminoácidos , Animais , Domínio Catalítico , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Humanos , Dados de Sequência Molecular , Mutação Puntual , Ligação Proteica , Conformação Proteica , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA